算法系列--动态规划--背包问题(1)--01背包介绍(下)

简介: 算法系列--动态规划--背包问题(1)--01背包介绍(下)

算法系列--动态规划--背包问题(1)--01背包介绍(上)

https://developer.aliyun.com/article/1480834?spm=a2c6h.13148508.setting.14.5f4e4f0eIqvzeb

💕"趁着年轻,做一些比较cool的事情"💕

作者:Lvzi

文章主要内容:算法系列–动态规划–背包问题(1)–01背包介绍

大家好,今天为大家带来的是算法系列--动态规划--背包问题(1)--01背包介绍

状态转移方程

这里多了个限制条件dp[i - 1][j - v[i]] != -1,还是根据题目要求得来的,要考虑一种特殊情况,也就是在[0,i]区间内的物品根本无法组合成体积为j的情况(这也是会存在的),要想i位置存在价值,必须保证i-1位置刚好能够实现j-v[i]的体积

初始化相较于第一问也有所不同,具体来说需要把dp表的第一行初始化为-1(除了dp[0][0]),第一行代表不选择任何物品,也就无法构成满足j体积这个条件,我们将其设置为-1

之所以设置为-1是为了和dp[0][0] = 0这种情况作区分

代码:

import java.util.Scanner;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    static int N = 1010;
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), V = in.nextInt();// 获取物品数目和背包体积
        // 处理第一问
        int[] v = new int[N],w = new int[N];// 存储物品的体积和价值
        for(int i = 1; i <= n; i++) {// 输入数值
            v[i] = in.nextInt(); 
            w[i] = in.nextInt();
        }
        int[][] dp = new int[N][N];
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= V; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j - v[i] >= 0) 
                    dp[i][j] = Math.max(dp[i - 1][j],dp[i - 1][j - v[i]] + w[i]);
            }
        }
        System.out.println(dp[n][V]);
        // 处理第二问
        dp = new int[N][N];
        for(int j = 1; j <= V; j++) {// 初始化
            dp[0][j] = -1;
        }
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= V; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j - v[i] >= 0 && dp[i - 1][j - v[i]] != -1)
                    dp[i][j] = Math.max(dp[i - 1][j],dp[i - 1][j - v[i]] + w[i]);
            }
        }
        System.out.println(dp[n][V] == -1 ? 0 : dp[n][V]);
    }
}

上述解法的空间复杂度是很高的,我们开辟的dp表是一个N*N的,下面介绍使用滚动数组实现空间优化

空间优化之后的代码:

import java.util.Scanner;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
    static int N = 1010;
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), V = in.nextInt();// 获取物品数目和背包体积
        // 处理第一问
        int[] v = new int[N],w = new int[N];// 存储物品的体积和价值
        for(int i = 1; i <= n; i++) {// 输入数值
            v[i] = in.nextInt(); 
            w[i] = in.nextInt();
        }
        int[] dp = new int[N];
        for(int i = 1; i <= n; i++) 
            for(int j = V; j >= v[i]; j--) 
                dp[j] = Math.max(dp[j],dp[j - v[i]] + w[i]);
            
        System.out.println(dp[V]);
        // 处理第二问
        dp = new int[N];
        for(int j = 1; j <= V; j++) 
            dp[j] = -1;// 初始化
        for(int i = 1; i <= n; i++) 
            for(int j = V; j >= v[i]; j--) 
                if(j - v[i] >= 0 && dp[j - v[i]] != -1)
                    dp[j] = Math.max(dp[j],dp[j - v[i]] + w[i]);
              
        System.out.println(dp[V] == -1 ? 0 : dp[V]);
    }
}

总结:本文的核心要点

  1. 什么是背包问题
  2. 01背包问题详解
  3. 背包问题的空间优化(滚动数组)

以上就是算法系列--动态规划--背包问题(1)--01背包介绍全部内容,下一篇文章将会带来01背包问题的拓展题目,敬请期待,我是LvZi


目录
相关文章
|
3天前
|
机器学习/深度学习 存储 算法
数据结构与算法 动态规划(启发式搜索、遗传算法、强化学习待完善)
数据结构与算法 动态规划(启发式搜索、遗传算法、强化学习待完善)
9 1
|
23天前
|
算法
代码随想录算法训练营第五十六天 | LeetCode 647. 回文子串、516. 最长回文子序列、动态规划总结
代码随想录算法训练营第五十六天 | LeetCode 647. 回文子串、516. 最长回文子序列、动态规划总结
34 1
|
1月前
|
算法
算法系列--动态规划--特殊的状态表示--分析重复子问题(下)
算法系列--动态规划--特殊的状态表示--分析重复子问题(下)
14 0
|
1月前
|
算法
算法系列--动态规划--特殊的状态表示--分析重复子问题(上)
算法系列--动态规划--特殊的状态表示--分析重复子问题
18 0
|
1月前
|
算法
算法系列--动态规划--背包问题(5)--二维费用背包问题(下)
算法系列--动态规划--背包问题(5)--二维费用背包问题(下)
14 0
|
1月前
|
算法
算法系列--动态规划--背包问题(5)--二维费用背包问题(上)
算法系列--动态规划--背包问题(5)--二维费用背包问题(上)
21 0
|
1月前
|
算法
算法系列--动态规划--背包问题(4)--完全背包拓展题目(下)
算法系列--动态规划--背包问题(4)--完全背包拓展题目(下)
21 0
|
1天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
2天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
2天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
12 1