轻松入门MySQL:精准查询,巧用WHERE与HAVING,数据库查询如虎添翼(7)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 轻松入门MySQL:精准查询,巧用WHERE与HAVING,数据库查询如虎添翼(7)

在进行数据库查询时,经常需要使用条件语句 WHEREHAVING 进行结果筛选。WHERE 用于直接对表字段进行限定,而 HAVING 需要与分组关键字 GROUP BY 结合使用,通过对分组字段或分组计算函数进行限定。在实际项目中,选择正确的条件语句是确保查询准确、资源占用少、速度更快的关键。

查询需求

在我们的进销存数据库中:查询单笔销售金额超过2000元的产品。这需要使用 WHEREHAVING 进行筛选。

假设有一个产品信息表 product_info 包含两种产品:手机和电视,以及一个产品销售明细表 sales_details 包含四条销售记录。

接下来,我们将使用 WHEREHAVING 分别进行查询,以了解它们的特点和优缺点。

使用 WHERE 进行查询

SELECT product_name
FROM sales_details AS a
JOIN product_info AS b ON a.product_id = b.product_id
WHERE a.sales_amount > 2000;

这样的查询直接对数据集进行筛选,通过条件 a.sales_amount > 2000 获取销售金额超过2000元的产品。

使用 HAVING 进行查询

SELECT b.product_name
FROM sales_details AS a
JOIN product_info AS b ON a.product_id = b.product_id
GROUP BY b.product_name
HAVING MAX(a.sales_amount) > 2000;

这种查询需要先使用 GROUP BY 对数据进行分组,然后通过 HAVING 对分组后的结果集进行筛选,确保销售金额超过2000元。

WHERE 和 HAVING 的执行过程

WHERE

  1. MySQL 从表 sales_details 中抽取满足条件 a.sales_amount > 2000 的记录。
  2. 通过公共字段 product_id 与表 product_info 进行关联,获取产品名称。
  3. 使用 DISTINCT 消除重复的记录。
  4. 得到销售金额超过2000元的产品。

HAVING

  1. 对产品销售明细表和产品信息表通过公共字段 product_id 进行连接,获取数据。
  2. 按产品名称分组,形成分组后的数据集。
  3. 对分组后的数据集筛选,保留销售金额的最大值大于2000的组。
  4. 返回产品名称,得到销售金额超过2000元的产品。

WHERE 和 HAVING 的优缺点

特点 WHERE HAVING
优点 先筛选数据再连接,执行效率高 可以使用分组中的计算函数进行筛选
缺点 不能使用分组中的计算函数进行筛选 在最后的结果集中进行筛选,执行效率较低

如何正确使用 WHERE 和 HAVING

  1. 了解它们的典型区别,特别是在关联查询中,WHERE 比 HAVING 更高效。
  2. WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数。HAVING 必须与 GROUP BY 配合使用。
  3. 在需要对数据进行分组统计时,使用 HAVING 完成 WHERE 不能完成的任务。

示例查询

假设有一个新的查询任务:查询销售金额超过1000元的产品的销售日期、产品名称、销售数量和销售金额。

SELECT
    a.sales_date,
    d.product_name,
    b.quantity,
    b.unit_price,
    b.sales_amount
FROM
    sales AS a
JOIN
    sales_details AS b ON a.sales_id = b.sales_id
JOIN
    products AS d ON b.product_id = d.product_id
WHERE
    a.sales_date IN ('2023-10-10', '2023-12-31')
    AND b.sales_amount > 1000;

这个查询通过连接销售表(sales)、销售明细表(sales_details)和产品表(products),获取符合条件的销售记录。然后使用 WHERE 条件限制销售日期在指定日期范围内,并筛选销售金额超过1000元的产品。

这个查询既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。

如何正确使用 WHERE 和 HAVING:更多建议

  1. 灵活运用 WHERE 条件
  • WHERE 条件适用于对单行数据进行筛选,可以根据具体需求构建多种条件组合,例如范围查询、模糊查询等。
  1. 合理使用 HAVING 条件
  • HAVING 条件适用于对分组后的数据进行聚合结果的筛选,例如筛选分组后的最大值、最小值等情况。
  1. 注意性能优化
  • 在大数据量的情况下,尽量在 WHERE 条件中完成对数据集的筛选,以提高查询效率。
  1. 善用索引
  • 对于经常用于查询条件的字段,可以考虑添加索引,以加快查询速度。
  1. 保持查询简洁
  • 在编写查询语句时,尽量保持简洁清晰,避免过度复

杂的逻辑,有助于提高代码的可读性和维护性。

通过合理地使用 WHERE 和 HAVING 条件,并结合上述更多的建议,可以更加高效地进行数据库查询,提升查询效率和开发效率。

总结

通过了解 WHERE 和 HAVING 的执行原理和特点,以及更多的使用建议和实际场景说明,我们可以在查询中充分利用它们的优势,更高效地实现我们的查询目标。在处理复杂的统计查询时,HAVING 尤为有用,因为它能轻松应对分组统计的需求,提高查询的灵活性和效率。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
2月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
128 0
|
17天前
|
存储 关系型数据库 MySQL
使用命令行cmd查询MySQL表结构信息技巧分享。
掌握了这些命令和技巧,您就能快速并有效地从命令行中查询MySQL表的结构信息,进而支持数据库维护、架构审查和优化等工作。
132 9
|
2月前
|
SQL 存储 关系型数据库
MySQL功能模块探秘:数据库世界的奇妙之旅
]带你轻松愉快地探索MySQL 8.4.5的核心功能模块,从SQL引擎到存储引擎,从复制机制到插件系统,让你在欢声笑语中掌握数据库的精髓!
|
2月前
|
SQL Oracle 关系型数据库
比较MySQL和Oracle数据库系统,特别是在进行分页查询的方法上的不同
两者的性能差异将取决于数据量大小、索引优化、查询设计以及具体版本的数据库服务器。考虑硬件资源、数据库设计和具体需求对于实现优化的分页查询至关重要。开发者和数据库管理员需要根据自身使用的具体数据库系统版本和环境,选择最合适的分页机制,并进行必要的性能调优来满足应用需求。
89 11
|
2月前
|
SQL 关系型数据库 MySQL
【赵渝强老师】MySQL中的数据库对象
本教程详细介绍了MySQL数据库中的常见对象,包括表、索引、视图、事件、存储过程和存储函数的创建与管理。内容涵盖表的基本操作、索引的使用、视图简化查询、事件调度功能等,并通过具体示例演示相关SQL语句的使用方法。
|
3月前
|
SQL 关系型数据库 MySQL
MySQL 进行 select 查询时 where 条件中 in 的value数过多却导致无记录返回
MySQL 进行 select 查询时 where 条件中 in 的value数过多返回不符合预期怎么办?会不会遇到bug了?
191 0
|
3月前
|
人工智能 运维 关系型数据库
数据库运维:mysql 数据库迁移方法-mysqldump
本文介绍了MySQL数据库迁移的方法与技巧,重点探讨了数据量大小对迁移方式的影响。对于10GB以下的小型数据库,推荐使用mysqldump进行逻辑导出和source导入;10GB以上可考虑mydumper与myloader工具;100GB以上则建议物理迁移。文中还提供了统计数据库及表空间大小的SQL语句,并讲解了如何使用mysqldump导出存储过程、函数和数据结构。通过结合实际应用场景选择合适的工具与方法,可实现高效的数据迁移。
613 1
|
4月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
3月前
|
SQL 关系型数据库 MySQL
Go语言数据库编程:使用 `database/sql` 与 MySQL/PostgreSQL
Go语言通过`database/sql`标准库提供统一数据库操作接口,支持MySQL、PostgreSQL等多种数据库。本文介绍了驱动安装、连接数据库、基本增删改查操作、预处理语句、事务处理及错误管理等内容,涵盖实际开发中常用的技巧与注意事项,适合快速掌握Go语言数据库编程基础。
223 62
|
6月前
|
关系型数据库 MySQL Java
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库

推荐镜像

更多