嵌入式Linux串口编程简介

简介: 嵌入式Linux串口编程简介

简介


嵌入式Linux下串口编程与Linux系统下的编程没有什么区别,系统API都是一样的。嵌入式设备中串口编程是很常用的,比如会对接一些传感器模块,这些模块大多是RS232或者RS485接口,对于软件层面上来说,RS232与RS48区别不大。RS232与RS485在使用上的区别,RS232是全双工的,只能对接一个设备串口设备。RS485是半双工的总线协议,一般可以挂多个传感器设备,半双工的意思是同时只能有一个设备向串口发数据。


用到的API函数

函数 说明
open 打开设备,用于打开串口设备
fcntl 修改设备描述符属性参数
isatty 检测打开的描述符是否指向一个终端
tcgetattr 用来获取串口终端参数
cfmakeraw 将终端设置为原始模式,该模式下所有的输入数据以字节为单位被处理
tcflush 用于清空输入、输出缓冲区
tcsetattr 设置串口终端参数
read 读取数据
write 写数据
close 关闭串口设备


代码

#include<termios.h>
#include "uart.h"

/***************************************
*name    : open_port
*功能描述: 打开串口
*入口参数: 串口号
*返 回 值: 成功返回文件描述符,失败返回负值
*作    者: 
*修改时间:
***************************************/
int open_port(const char * com_port)
{
    int fd;

  if( com_port == NULL ){
        printf("the port name is null\n");
        return -1;
    }
    /*open port*/
    fd = open(com_port, O_RDWR | O_NOCTTY | O_NDELAY);
    if(fd < 0){
        fd = open(com_port, O_RDWR | O_NOCTTY | O_NDELAY);
        if(fd < 0){
            perror("open serial port");
            return -1;
        }
    }
    printf("open %s OK!\n", com_port);
    if(fcntl(fd, F_SETFL,0) < 0){
        perror("fcntl F_SETFL");
    }

    if(isatty(fd) == 0){
        perror("isatty is not a terminal device");
    }
    return fd;
}

/******************************
*name    : set_port
*功能描述: 设置串口参数
*入口参数: fd 文件描述符, baud_rate 波特率, data_bits 数据位,
*          parity 奇偶校验, stop_bits 停止位
*     调用示例: set_port(fd, 115200, 8, 'N',1);
*返 回 值: 成功返回0,失败返回-1
*作    者: 
*修改: 
******************************/
int set_port(int fd, int baud_rate,
             int data_bits, char parity, int stop_bits)
{
    struct termios new_cfg, old_cfg;
    int speed_arry[]= {B2400, B4800, B9600, B19200, B38400,B57600, B115200};
    int speed[]={2400,4800,9600,19200,38400,57600,115200};
    int i = 0;

    /*save and test the serial port*/
    if(tcgetattr(fd, &old_cfg) < 0){
        perror("tcgetattr");
        return -1;
    }
  
  if(fcntl(fd,F_SETFL,0) < 0)//恢复为阻塞模式
  {
    perror("fcntl(CzjFd,F_SETFL,0)!");
  }

    new_cfg = old_cfg;
    cfmakeraw(&new_cfg);     //配置为原来配置
    new_cfg.c_cflag &= ~ CSIZE;     //用数据位掩码清空数据位的设置

    /*set baud_rate*/
    for(i = sizeof(speed_arry) / sizeof(speed_arry[0]); i > 0; i--)
    {
        if(baud_rate == speed[i]){
            cfsetispeed(&new_cfg,speed_arry[i]);
            cfsetospeed(&new_cfg,speed_arry[i]);
        }
    }

    switch(data_bits)    /*设置数据位*/
    {
        case 7:
                new_cfg.c_cflag |= CS7;
                break;

        default:
        case 8:
                new_cfg.c_cflag |= CS8;
                break;
    }

    switch(parity)
    {
        default:
        case 'N':
        case 'n':
        {
            new_cfg.c_cflag &= ~PARENB;     //清除校验位
            new_cfg.c_iflag &= ~(ICRNL|INPCK|IXON|IXOFF);      //关闭奇偶校验  关闭软件流控
            
      break;
        }

        case 'o':
        case 'O':
        {
            new_cfg.c_cflag |= (PARODD | PARENB); //使用奇校验不是用偶校验
            new_cfg.c_iflag |= INPCK;
      break;
        }

        case 'e':
        case 'E':
        {
            new_cfg.c_cflag |= PARENB;
            new_cfg.c_cflag &= ~PARODD;     //使用偶校验
      new_cfg.c_iflag |= INPCK;
      break;
        }

        case 's':
        case 'S':
        {
            new_cfg.c_cflag &= ~PARENB;
            new_cfg.c_cflag &= ~CSTOPB;
      break;
        }
    }
  
    new_cfg.c_iflag &= ~(ICRNL| IXON | IXOFF  );      //关闭奇偶校验  关闭软件流控
  new_cfg.c_oflag &= ~OPOST;

    switch(stop_bits)
    {
        default:
        case 1:
        {
            new_cfg.c_cflag &= ~CSTOPB;
            new_cfg.c_cflag &= ~CRTSCTS;   //禁用硬件流控
            //new_cfg.c_cflag |= CRTSCTS;    //启用硬件流控
      break;
        }
        case 2:
        {
            new_cfg.c_cflag |= CSTOPB;
      break;
    }
    }

    /*set wait time*/
    new_cfg.c_cc[VTIME] = 0;
    new_cfg.c_cc[VMIN]  = 1;

    tcflush(fd, TCIFLUSH);   //处理未接收字符
  if((tcsetattr(fd, TCSANOW, &new_cfg)) < 0)
    {
        perror("tcsetattr");
        return -1;
    }

    return 0;
}



调用测试代码:

#include "uart.h"
#include <stdio.h>
#include <unistd.h>


int main()
{
  int fd = open_port("/dev/ttyS1");
  if ( fd < 0 )
  {
    perror("open port");
    return -1;
  }
  
  set_port(fd, 115200, 8, 'N',1);
  
  char readBuf[32] ={0};
  const char *pstr="hello world";
  write(fd, pstr, strlen(pstr)+1);
  
  read(fd, readBuf, sizeof(readBuf));
  
  close(fd);
}

目录
相关文章
|
8天前
|
消息中间件 存储 缓存
【嵌入式软件工程师面经】Linux系统编程(线程进程)
【嵌入式软件工程师面经】Linux系统编程(线程进程)
20 1
|
8天前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
26 1
|
4天前
|
算法 Linux 测试技术
Linux编程:测试-高效内存复制与随机数生成的性能
该文探讨了软件工程中的性能优化,重点关注内存复制和随机数生成。文章通过测试指出,`g_memmove`在内存复制中表现出显著优势,比简单for循环快约32倍。在随机数生成方面,`GRand`库在1000万次循环中的效率超过传统`rand()`。文中提供了测试代码和Makefile,建议在性能关键场景中使用`memcpy`、`g_memmove`以及高效的随机数生成库。
|
8天前
|
消息中间件 安全 Java
【嵌入式软件工程师面经】Linux多进程与多线程
【嵌入式软件工程师面经】Linux多进程与多线程
9 1
|
8天前
|
存储 缓存 Unix
【嵌入式软件工程师面经】Linux文件IO
【嵌入式软件工程师面经】Linux文件IO
13 1
|
10天前
|
物联网 Linux 芯片
学习嵌入式是选择单片机还是Linux?
单片机通常指的是一种集成了处理器、存储器和各种外设接口的微控制器芯片,常见的有STC、51系列、AVR、ARM Cortex-M等。单片机具有低成本、低功耗、实时性强等特点,适用于对资源要求较低、功耗要求较低、实时性要求较高的嵌入式系统。学习单片机开发可以让您深入了解嵌入式系统的底层原理和硬件编程,对于对嵌入式系统底层开发感兴趣的人来说,是一个很好的选择。
15 4
|
3天前
|
安全 算法 Linux
探索Linux命令gpgv2:安全通信与数据验证的利器
`gpgv2`是GPG的签名验证工具,用于确保文件完整性和来源真实性。基于公钥密码学,支持多种加密算法和OpenPGP标准。通过`--verify`等参数验证签名,例如`gpgv2 --verify signature_file file`。重要注意事项包括保护私钥、定期更新密钥、验证签名来源及使用强密码。在数据安全场景中,`gpgv2`是保障信息安全的利器。
|
3天前
|
安全 Linux 数据处理
深入探索Linux中的gpgsplit命令
`gpgsplit`是GPG套件的一部分,用于分割大型加密文件或合并加密的OpenPGP消息。它支持ASCII armored和二进制格式,提供按字节数、行数或消息数分割的灵活性,并可合并消息。在处理大型加密文件、安全管理及数据传输中发挥作用。使用时注意保护私钥、备份数据、正确指定格式,并遵循安全实践。示例:使用`--split 10M`将大文件按10MB分割,`cat`多个消息文件并用`gpgsplit --output`合并。