【FreeRTOS】中断管理(三)

简介: 【FreeRTOS】中断管理

【FreeRTOS】中断管理(二)https://developer.aliyun.com/article/1472602


串口接收中断(队列的中断使用)

实验目的:将串口接收到得数据打印出来,根据指令控制LED

完整main.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under Ultimate Liberty license
  * SLA0044, the "License"; You may not use this file except in compliance with
  * the License. You may obtain a copy of the License at:
  *                             www.st.com/SLA0044
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include "queue.h"
#include <string.h>
#include "timers.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void MX_FREERTOS_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int fputc(int ch, FILE *f) 
{
  HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);
  return ch;
}
TaskHandle_t  key_task_hand;        // 按键任务句柄
uint8_t uart1_ch;                   // 串口接收buff
QueueHandle_t uart1_queue;          // 串口数据队列
TimerHandle_t uart1_timer;          // 串口接收定时器
char uart1_buff[128] = { 0 };       // 串口数据接收buff
char uart1_cur = 0;                 // 串口数据位置
#define UART_QUEUE_LEN              1024
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
    BaseType_t xHigherPriorityTaskWoken=pdFALSE;
    BaseType_t err;
    if(huart->Instance==USART1)
    {  
        // 串口接收中断接收一次就会关系所以我们需要重新开启串口空闲接收
        HAL_UART_Receive_IT(&huart1,&uart1_ch,1);  
        
        err=xQueueSendFromISR(uart1_queue,&uart1_ch,&xHigherPriorityTaskWoken);//发送消息到队尾
        
        if(err==errQUEUE_FULL) // 添加到队列失败
        {
            printf("xQueue is full,send message fail to pc\r\n");
        }
        
        if( xHigherPriorityTaskWoken == pdTRUE )
        {
            // If xHigherPriorityTaskWoken is now set to pdTRUE then a context switch should be requested.  
            portEND_SWITCHING_ISR( xHigherPriorityTaskWoken );
        }
    }
}
/*
* bit0: KEY0事件标志位
* bit1: KEY1事件标志位
* bit2: KEY2事件标志位
*/
#define KEY0_EVENT      (1<<0)
#define KEY1_EVENT      (1<<1)
#define KEY2_EVENT      (1<<2)
#define KEY_ALL_ENEVT   (KEY0_EVENT | KEY1_EVENT | KEY2_EVENT)
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
    // xHigherPriorityTaskWoken must be initialised to pdFALSE.
    BaseType_t xHigherPriorityTaskWoken = pdFALSE;
    /* 按键0 */
    if(GPIO_Pin == KEY0_EXTI_Pin)
    {
        xTaskNotifyFromISR(key_task_hand, KEY0_EVENT, eSetBits, &xHigherPriorityTaskWoken);
    }
    /* 按键1 */
    else if(GPIO_Pin == KEY1_EXTI_Pin)
    {
        xTaskNotifyFromISR(key_task_hand, KEY1_EVENT, eSetBits, &xHigherPriorityTaskWoken);
    }
    /* 按键2 */
    else if(GPIO_Pin == KEY2_EXTI_Pin)
    {
        xTaskNotifyFromISR(key_task_hand, KEY2_EVENT, eSetBits, &xHigherPriorityTaskWoken);
    }
    if( xHigherPriorityTaskWoken == pdTRUE )
    {
        // If xHigherPriorityTaskWoken is now set to pdTRUE then a context switch should be requested.  
        portEND_SWITCHING_ISR( xHigherPriorityTaskWoken );
    }
}
static void AppKeyTask(void *par)
{
    uint32_t key;
    while(1)
    {
        xTaskNotifyWait(pdFALSE,    // 进入函数前不清空
            0xffffffff,     // 退出函数后清空所有位
            &key,         // 得到按键值
            portMAX_DELAY); // 永远等待
        
        if((key & KEY0_EVENT) != 0)
        {
            printf("事件1执行!\r\n");
        }
        
        else if((key & KEY1_EVENT) != 0)
        {
            printf("事件2执行!\r\n");
        }
        
        else if((key & KEY2_EVENT) != 0)
        {
            printf("事件3执行!\r\n");
        }
        
    }
}
static void AppLedTask(void *par)
{
    while(1)
    {
        HAL_GPIO_TogglePin(LED0_GPIO_Port, LED0_Pin);   
        vTaskDelay(100);
    }
}
static void AppTimerUart1Callback(TimerHandle_t  xTimer)
{
    printf("接收数据:%s\r\n", uart1_buff);
    
    if(!strcmp(uart1_buff, "ON"))
    {
        HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_RESET);
        printf("LED ON!\r\n");
    }
    if(!strcmp(uart1_buff, "OFF"))
    {
        HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET);
        printf("LED OFF!\r\n");
    }
    
    memset(uart1_buff,0, sizeof(uart1_buff));
    uart1_cur = 0;
}
static void AppUart1Task(void *par)
{
    uint8_t ch;
    BaseType_t err;
    while(1)
    {
        err = xQueueReceive( uart1_queue, &ch, portMAX_DELAY );
        if(err == pdPASS)
        {
            uart1_buff[uart1_cur++] = ch;
        }
        xTimerStart(uart1_timer, portMAX_DELAY);
    }
}
static int AppBspInit()
{
    //开启串口空闲接收, uart1_buff是接收存放得变量, 1表示接收一个数据进入中断
    HAL_UART_Receive_IT(&huart1,&uart1_ch,1); 
    
    printf("[%s] [%s] BSP Init success\r\n", __DATE__, __TIME__);
    return 1;
}
static int AppCreatSems()
{
    printf("[%s] [%s] Creat Sems success\r\n", __DATE__, __TIME__);
    return 1;
}
static int AppCreatMutexs()
{
    printf("[%s] [%s] Creat Mutexs success\r\n", __DATE__, __TIME__);
    return 1;
}
static int AppCreatTimers()
{
    /* 单次20tick的定时器 20ms没接收到串口数据表示接收完成 */
    uart1_timer = xTimerCreate("uart_timer",200,pdFALSE,NULL,AppTimerUart1Callback);
    
    printf("[%s] [%s] Creat Tasks success\r\n", __DATE__, __TIME__);
    return 1;
}
static int AppCreatQueues()
{
    uart1_queue = xQueueCreate(UART_QUEUE_LEN,sizeof(uint8_t));//UART_QUEUE_LEN队列的队列长度,单位为字节
    printf("[%s] [%s] Creat Queues success\r\n", __DATE__, __TIME__);
    return 1;
}
static int AppCreatTasks()
{
    /* 创建key_task任务 */
    xTaskCreate((TaskFunction_t )AppKeyTask,"key",128,NULL,1, &key_task_hand);
  
    /* 创建led_task任务 */
    xTaskCreate((TaskFunction_t )AppLedTask,"led",128,NULL,0,NULL);
    
    /* 创建uart1_task任务 */
    xTaskCreate((TaskFunction_t )AppUart1Task,"uart",1024,NULL,2,NULL);
    
    
    printf("[%s] [%s] Creat Tasks success\r\n", __DATE__, __TIME__);
    return 1;
}
/* USER CODE END 0 */
/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  /* USER CODE END 1 */
  /* MCU Configuration--------------------------------------------------------*/
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
  /* USER CODE BEGIN Init */
  /* USER CODE END Init */
  /* Configure the system clock */
  SystemClock_Config();
  /* USER CODE BEGIN SysInit */
  /* USER CODE END SysInit */
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
  
  printf("---------------WELCOME TO FREERTOS BEGIN------------------\r\n");
  /* 在实际开发中创建成功与否应该做相对应的判断 */
  /* 硬件初始化 */
  AppBspInit();
  /* 创建信号量 */
  AppCreatSems();
  /* 创建互斥量 */
  AppCreatMutexs();
  /* 创建队列 */
  AppCreatQueues();
  /* 创建软件定时器 */
  AppCreatTimers();
  /* 创建任务 */
  AppCreatTasks();
   
  printf("[%s] [%s] Start Kernel success\r\n", __DATE__, __TIME__);
  printf("---------------WELCOME TO FREERTOS END  ------------------\r\n");
  /* USER CODE END 2 */
  /* Init scheduler */
  osKernelInitialize();  /* Call init function for freertos objects (in freertos.c) */
  MX_FREERTOS_Init();
  /* Start scheduler */
  osKernelStart();
  /* We should never get here as control is now taken by the scheduler */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
    /* USER CODE BEGIN 3 */
    printf("[%s] [%s] Start Kernel eRROR\r\n", __DATE__, __TIME__);
    return  -1;
  }
  /* USER CODE END 3 */
}
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 168;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
  * @brief  Period elapsed callback in non blocking mode
  * @note   This function is called  when TIM2 interrupt took place, inside
  * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  * a global variable "uwTick" used as application time base.
  * @param  htim : TIM handle
  * @retval None
  */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
  /* USER CODE BEGIN Callback 0 */
  /* USER CODE END Callback 0 */
  if (htim->Instance == TIM2) {
    HAL_IncTick();
  }
  /* USER CODE BEGIN Callback 1 */
  /* USER CODE END Callback 1 */
}
/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  /* USER CODE END Error_Handler_Debug */
}
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

实验现象

结尾

我是凉开水白菜,我们下文见~

相关文章
|
6天前
【FreeRTOS】中断管理(二)
【FreeRTOS】中断管理
|
6天前
|
API 调度
【FreeRTOS】软件定时器的使用
【FreeRTOS】软件定时器的使用
|
6天前
|
数据采集 调度 C语言
嵌入式系统中的定时器中断与任务调度
嵌入式系统中的定时器中断与任务调度
36 0
|
芯片 开发者 SoC
E906的中断系统|学习笔记
快速学习 E906的中断系统
453 0
E906的中断系统|学习笔记
|
6天前
|
API C语言
【FreeRTOS】中断管理(一)
【FreeRTOS】中断管理
|
6天前
|
API 调度
FreeRTOS深入教程(中断管理)
FreeRTOS深入教程(中断管理)
115 0
|
6天前
|
调度
FreeRTOS深入教程(空闲任务和Tick中断深入分析)
FreeRTOS深入教程(空闲任务和Tick中断深入分析)
86 0
|
7月前
|
传感器 调度
什么是中断系统?
一、什么是中断系统 中断系统是计算机系统中的一种机制,它允许外部设备和程序请求处理器的注意力,以便进行特定的操作。当一个中断请求被触发时,处理器会暂停当前正在执行的程序,转而执行与中断相关的程序或服务例程。中断系统可以提高计算机系统的效率和响应速度,因为它允许处理器在等待某些事件的同时执行其他任务。常见的中断包括硬件中断(例如键盘输入、鼠标移动、网络数据传输等)和软件中断(例如操作系统调度、系统调用等)。 二、中断系统的特点 中断系统具有以下特点: 1. 实时性:中断系统能够及时响应外部设备的请求,提高计算机系统的响应速度和效率。 2. 可靠性:中断系统能够保证中断请求的可靠性,确保外部设备的
191 0
|
存储 测试技术 API
14-FreeRTOS任务控制
14-FreeRTOS任务控制