数学建模-------误差来源以及误差分析

简介: 数学建模-------误差来源以及误差分析

绝对误差:精确值-近似值;

举个例子:从A到B,应该有73千米,但是我们近似成了70千米;从C到D,应该是1373千米,我们近似成了1370千米,如果使用绝对误差,结果都是3,显然无法衡量我们误差的大小,这个时候我们引入了相对误差;

相对误差:精确值-近似值/精确值;我们希望通过两者的界限可以相互转换,所以我们在实际计算时候,用绝对误差除以近似值就得到相对误差,这个时候如果我们知道绝对误差的界限,我们就可以得出相对误差的界限(通过证明可以利用无穷小得知,这样替换以后得到的相对误差会更小);

误差的种类:

(1)模型误差:就是建立模型时候,忽略掉的因素,比如自由落体的问题,我们忽略空气阻力建立的数学模型,这个过程所产生的误差就是模型误差;

(2)观测误差:那自由落体问题,计算下落时间,物体到地面的高度会有观测误差;

(3)方法误差:一个实际问题会有不同的解决方案,我们利用不同的方案,就会得到不同的精度,这个过程的误差叫做方法误差;

(4)舍入误差:就是由于计算机的四舍五入而产生的误差,我本来也是认为计算机不会四舍五入,老师讲解后才明白计算机的精度是有限的,当我们的计算超过计算机的精度的时候,计算机无法准确的计算,它会根据实际情况取舍,例如,有一个0~1之间数字超过计算机的精度,如果距离0更近,就按照0进行计算,否则就按照1进行计算;减小舍入误差的方法就是减少计算的时间,步骤;

误差的传播:

这里老师引入了一个误差传播系数的概念,通过它衡量单个误差对于结果误差的影响;

(1)加法:

例如1/3+2/3=1;其实计算机在进行计算时候,是进行了四舍五入的,因为1/3和2/3都无法精确地进行计算,这个时候1/3的误差是0.000.........3(因为真实值是无限无数的3,但是计算机只是取了有限位数;2/3再进行计算时误差是-0.0000.......3(因为真实值是无限位数的6,但是计算机取大了,误差是精确值减去近似值,所以是一个负数)两者在相加的过程中是完全抵消掉的,所以我们依然可以得出正确的答案;这里y的绝对误差是两者的代数和,是带有正负号的;所以两者相加时候,误差不一定会增加;

这里的系数就是误差传播系数,通过它来衡量单个误差对于结果误差的影响程度,通过放缩法可以得到相对误差一定是减小了的;

(2)减法:

同理可得,做减法的时候,当x1,x2很接近的时候,就会得到误差传播系数无穷大,扩大误差,因此,减小误差的手段就是避免两个十分相近的数字进行减法;两个相近的近似数做减法才有很大误差;

(3)乘法:

显而易见,X1的传播系数是X2,X2的误差传播系数是X1;因此减小乘法运算的误差就要避免2个绝对值很大的数字相乘;而相对误差是两个相对误差的代数和

(4)除法:

根据通式,分别对x1,x2求偏导数,减小误差的方法就是避免绝对值很小的数字做除法运算,通过凑配得出相对误差

算法的稳定性,收敛性:当我们计算第无穷项数之后,误差趋近于0时,我们称该算法是收敛的;

当输入的误差越小时候,输出的误差越小,我们称该算法是可控的,稳定的。

相关文章
|
Python
数学建模——统计回归模型
数学建模——统计回归模型
174 0
|
4月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
时间序列分析实战(十一):ECM误差修正模型
时间序列分析实战(十一):ECM误差修正模型
|
程序员
时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)
时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)
|
8月前
|
机器学习/深度学习 存储
matlab使用分位数随机森林(QRF)回归树检测异常值
matlab使用分位数随机森林(QRF)回归树检测异常值
|
8月前
|
存储 vr&ar
Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列
Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列
【MATLAB第26期】区间预测 | 基于MATLAB的LASSO分位数回归预测模型 负荷预测数据
【MATLAB第26期】区间预测 | 基于MATLAB的LASSO分位数回归预测模型 负荷预测数据
【MATLAB第60期】源码分享 | 基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型
ARMAX模型相比ARMA考虑了影响因素 ,即可以实现基于时间序列数据的回归预测。目前,ARMAX预测未来功能存在困难,本篇文章不予介绍。大致思路需要通过时间滞后构造数据,使前时间段的X预测后时间段的Y,即多步预测。此示例展示如何将时间序列中的时间划分为预采样期T0、训练期Ty和预测期Tf,并显示了如何提供适当数量的观测值来初始化用于估计和预测的动态模型。通过定义ARMA模型中的参数,可实现ARIMAX和SARIMAX模型。本文介绍最基础的ARMAX模型。
【MATLAB第60期】源码分享 | 基于MATLAB的ARMAX具有外生回归因子的移动平均自回归模型
|
机器学习/深度学习 传感器 算法
多元分类预测 | Matlab 黏菌优化深度置信网络(SMA-DBN)分类预测
多元分类预测 | Matlab 黏菌优化深度置信网络(SMA-DBN)分类预测

热门文章

最新文章