MySQL索引和查询优化

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL索引和查询优化

MySQL索引类型包括:

(1)普通索引

这是最基本的索引,它没有任何限制。它有以下几种创建方式:

创建索引

  1. CREATE INDEX indexName ON mytable(username(length));

如果是CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型,必须指定 length,下同。

修改表结构

  1. ALTER mytable ADD INDEX [indexName] ON (username(length))

创建表的时候直接指定

  1. CREATE TABLE mytable( ID INT NOT NULL,
    username VARCHAR(16) NOT NULL, INDEX [indexName] (username(length)) );

删除索引的语法:

  1. DROP INDEX [indexName] ON mytable;

(2)MySQL索引类型:唯一索引

它与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值(设计时候除非有必要,一般不要设为null,可以设空字符串等)。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:

创建索引

  1. CREATE UNIQUE INDEX indexName ON mytable(username(length))

修改表结构

  1. ALTER mytable ADD UNIQUE [indexName] ON (username(length))

创建表的时候直接指定

  1. CREATE TABLE mytable( ID INT NOT NULL,
    username VARCHAR(16) NOT NULL, UNIQUE [indexName] (username(length)) );

(3)MySQL索引类型:主键索引

它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引:

  1. CREATE TABLE mytable( ID INT NOT NULL, username VARCHAR(16) NOT NULL, PRIMARY KEY(ID) );

当然也可以用 ALTER 命令。记住:一个表只能有一个主键。

(4)组合索引

为了形象地对比单列索引和组合索引,为表添加多个字段:

  1. CREATE TABLE mytable( ID INT NOT NULL, username
    VARCHAR(16) NOT NULL, city VARCHAR(50) NOT NULL, age INT NOT NULL );

为了进一步榨取MySQL的效率,就要考虑建立组合索引。就是将 name, city, age建到一个索引里:

  1. ALTER TABLE mytable ADD INDEX name_city_age (name(10),city,age);

建表时,usernname长度为 16,这里用 10。这是因为一般情况下名字的长度不会超过10,这样会加速索引查询速度,还会减少索引文件的大小,提高INSERT的更新速度。

如果分别在 usernname,city,age上建立单列索引,让该表有3个单列索引,查询时和上述的组合索引效率也会大不一样,远远低于我们的组合索引。虽然此时有了三个索引,但MySQL只能用到其中的那个它认为似乎是最有效率的单列索引。

 

建立这样的组合索引,其实是相当于分别建立了下面三组组合索引:

  1. usernname , city, age usernname , city usernname

以上的相关内容就是对MySQL索引类型的部分内容的介绍,望你能有所收获。

 


 

使用索引的注意事项

使用索引时,有以下一些技巧和注意事项:

索引不会包含有NULL值的列

只要列中包含有NULL值都将不会被包含在MySQL索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为NULL。

使用短索引

对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的列,如果在前10个或20个字符内,多数值是惟一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作。

索引列排序

MySQL查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求的情况下不要使用排序操作;尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。

like语句操作

一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用MySQL索引而like “aaa%”可以使用索引。

不要在列上进行运算

  1. select * from users where YEAR(adddate)<2007;  

将在每个行上进行运算,这将导致索引失效而进行全表扫描,因此我们可以改成

  1. select * from users where adddate<‘2007-01-01’;  

不使用NOT IN和<>操作

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
2月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
2月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
89 4
|
4月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
6月前
|
关系型数据库 MySQL 数据库
Mysql的索引
MYSQL索引主要有 : 单列索引 , 组合索引和空间索引 , 用的比较多的就是单列索引和组合索引 , 空间索引我这边没有用到过 单列索引 : 在MYSQL数据库表的某一列上面创建的索引叫单列索引 , 单列索引又分为 ● 普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快一点。 ● 唯一索引:索引列中的值必须是唯一的,但是允许为空值 ● 主键索引:是一种特殊的唯一索引,不允许有空值 ● 全文索引: 只有在MyISAM引擎、InnoDB(5.6以后)上才能使⽤用,而且只能在CHAR,VARCHAR,TEXT类型字段上使⽤用全⽂文索引。
|
2月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
3月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
107 9
|
4月前
|
机器学习/深度学习 关系型数据库 MySQL
对比MySQL全文索引与常规索引的互异性
现在,你或许明白了这两种索引的差异,但任何技术决策都不应仅仅基于理论之上。你可以创建你的数据库实验环境,尝试不同类型的索引,看看它们如何影响性能,感受它们真实的力量。只有这样,你才能熟悉它们,掌握什么时候使用全文索引,什么时候使用常规索引,以适应复杂多变的业务需求。
101 12
|
8月前
|
存储 关系型数据库 MySQL
MySQL索引学习笔记
本文深入探讨了MySQL数据库中慢查询分析的关键概念和技术手段。
574 81
|
5月前
|
SQL 存储 关系型数据库
MySQL选错索引了怎么办?
本文探讨了MySQL中因索引选择不当导致查询性能下降的问题。通过创建包含10万行数据的表并插入数据,分析了一条简单SQL语句在不同场景下的执行情况。实验表明,当数据频繁更新时,MySQL可能因统计信息不准确而选错索引,导致全表扫描。文章深入解析了优化器判断扫描行数的机制,指出基数统计误差是主要原因,并提供了通过`analyze table`重新统计索引信息的解决方法。
133 3
|
4月前
|
缓存 JSON 关系型数据库
MySQL 查询优化分析 - 常用分析方法
本文介绍了MySQL查询优化分析的常用方法EXPLAIN、Optimizer Trace、Profiling和常用监控指标。

推荐镜像

更多