Python 中的数字到底是什么?

简介: Python 中的数字到底是什么?


概要

本提案定义了一种抽象基类(ABC)(PEP 3119)的层次结构,用来表示类似数字(number-like)的类。它提出了一个 Number :> Complex :> Real :> Rational :> Integral 的层次结构,其中 A :> B 表示“A 是 B 的超类”。该层次结构受到了 Scheme 的数字塔(numeric tower)启发。(译注:数字--复数--实数--有理数--整数)

基本原理

以数字作为参数的函数应该能够判定这些数字的属性,并且根据数字的类型,确定是否以及何时进行重载,即基于参数的类型,函数应该是可重载的。

例如,切片要求其参数为Integrals,而math模块中的函数要求其参数为Real

规范

本 PEP 规定了一组抽象基类(Abstract Base Class),并提出了一个实现某些方法的通用策略。它使用了来自于PEP 3119的术语,但是该层次结构旨在对特定类集的任何系统方法都有意义。

标准库中的类型检查应该使用这些类,而不是具体的内置类型。

数值类

我们从 Number 类开始,它是人们想象的数字类型的模糊概念。此类仅用于重载;它不提供任何操作。

class Number(metaclass=ABCMeta): pass

大多数复数(complex number)的实现都是可散列的,但是如果你需要依赖它,则必须明确地检查:此层次结构支持可变的数。

class Complex(Number):
    """Complex defines the operations that work on the builtin complex type.
    In short, those are: conversion to complex, bool(), .real, .imag,
    +, -, *, /, **, abs(), .conjugate(), ==, and !=.
    If it is given heterogenous arguments, and doesn't have special
    knowledge about them, it should fall back to the builtin complex
    type as described below.
    """
    @abstractmethod
    def __complex__(self):
        """Return a builtin complex instance."""
    def __bool__(self):
        """True if self != 0."""
        return self != 0
    @abstractproperty
    def real(self):
        """Retrieve the real component of this number.
        This should subclass Real.
        """
        raise NotImplementedError
    @abstractproperty
    def imag(self):
        """Retrieve the real component of this number.
        This should subclass Real.
        """
        raise NotImplementedError
    @abstractmethod
    def __add__(self, other):
        raise NotImplementedError
    @abstractmethod
    def __radd__(self, other):
        raise NotImplementedError
    @abstractmethod
    def __neg__(self):
        raise NotImplementedError
    def __pos__(self):
        """Coerces self to whatever class defines the method."""
        raise NotImplementedError
    def __sub__(self, other):
        return self + -other
    def __rsub__(self, other):
        return -self + other
    @abstractmethod
    def __mul__(self, other):
        raise NotImplementedError
    @abstractmethod
    def __rmul__(self, other):
        raise NotImplementedError
    @abstractmethod
    def __div__(self, other):
        """a/b; should promote to float or complex when necessary."""
        raise NotImplementedError
    @abstractmethod
    def __rdiv__(self, other):
        raise NotImplementedError
    @abstractmethod
    def __pow__(self, exponent):
        """a**b; should promote to float or complex when necessary."""
        raise NotImplementedError
    @abstractmethod
    def __rpow__(self, base):
        raise NotImplementedError
    @abstractmethod
    def __abs__(self):
        """Returns the Real distance from 0."""
        raise NotImplementedError
    @abstractmethod
    def conjugate(self):
        """(x+y*i).conjugate() returns (x-y*i)."""
        raise NotImplementedError
    @abstractmethod
    def __eq__(self, other):
        raise NotImplementedError
    # __ne__ is inherited from object and negates whatever __eq__ does.

Real抽象基类表示在实数轴上的值,并且支持内置的float的操作。实数(Real number)是完全有序的,除了 NaN(本 PEP 基本上不考虑它)。

class Real(Complex):
    """To Complex, Real adds the operations that work on real numbers.
    In short, those are: conversion to float, trunc(), math.floor(),
    math.ceil(), round(), divmod(), //, %, <, <=, >, and >=.
    Real also provides defaults for some of the derived operations.
    """
    # XXX What to do about the __int__ implementation that's
    # currently present on float?  Get rid of it?
    @abstractmethod
    def __float__(self):
        """Any Real can be converted to a native float object."""
        raise NotImplementedError
    @abstractmethod
    def __trunc__(self):
        """Truncates self to an Integral.
        Returns an Integral i such that:
          * i>=0 iff self>0;
          * abs(i) <= abs(self);
          * for any Integral j satisfying the first two conditions,
            abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
        i.e. "truncate towards 0".
        """
        raise NotImplementedError
    @abstractmethod
    def __floor__(self):
        """Finds the greatest Integral <= self."""
        raise NotImplementedError
    @abstractmethod
    def __ceil__(self):
        """Finds the least Integral >= self."""
        raise NotImplementedError
    @abstractmethod
    def __round__(self, ndigits:Integral=None):
        """Rounds self to ndigits decimal places, defaulting to 0.
        If ndigits is omitted or None, returns an Integral,
        otherwise returns a Real, preferably of the same type as
        self. Types may choose which direction to round half. For
        example, float rounds half toward even.
        """
        raise NotImplementedError
    def __divmod__(self, other):
        """The pair (self // other, self % other).
        Sometimes this can be computed faster than the pair of
        operations.
        """
        return (self // other, self % other)
    def __rdivmod__(self, other):
        """The pair (self // other, self % other).
        Sometimes this can be computed faster than the pair of
        operations.
        """
        return (other // self, other % self)
    @abstractmethod
    def __floordiv__(self, other):
        """The floor() of self/other. Integral."""
        raise NotImplementedError
    @abstractmethod
    def __rfloordiv__(self, other):
        """The floor() of other/self."""
        raise NotImplementedError
    @abstractmethod
    def __mod__(self, other):
        """self % other
        See
        https://mail.python.org/pipermail/python-3000/2006-May/001735.html
        and consider using "self/other - trunc(self/other)"
        instead if you're worried about round-off errors.
        """
        raise NotImplementedError
    @abstractmethod
    def __rmod__(self, other):
        """other % self"""
        raise NotImplementedError
    @abstractmethod
    def __lt__(self, other):
        """< on Reals defines a total ordering, except perhaps for NaN."""
        raise NotImplementedError
    @abstractmethod
    def __le__(self, other):
        raise NotImplementedError
    # __gt__ and __ge__ are automatically done by reversing the arguments.
    # (But __le__ is not computed as the opposite of __gt__!)
    # Concrete implementations of Complex abstract methods.
    # Subclasses may override these, but don't have to.
    def __complex__(self):
        return complex(float(self))
    @property
    def real(self):
        return +self
    @property
    def imag(self):
        return 0
    def conjugate(self):
        """Conjugate is a no-op for Reals."""
        return +self

我们应该整理 Demo/classes/Rat.py,并把它提升为 Rational.py 加入标准库。然后它将实现有理数(Rational)抽象基类。

class Rational(Real, Exact):
    """.numerator and .denominator should be in lowest terms."""
    @abstractproperty
    def numerator(self):
        raise NotImplementedError
    @abstractproperty
    def denominator(self):
        raise NotImplementedError
    # Concrete implementation of Real's conversion to float.
    # (This invokes Integer.__div__().)
    def __float__(self):
        return self.numerator / self.denominator

最后是整数类:

class Integral(Rational):
    """Integral adds a conversion to int and the bit-string operations."""
    @abstractmethod
    def __int__(self):
        raise NotImplementedError
    def __index__(self):
        """__index__() exists because float has __int__()."""
        return int(self)
    def __lshift__(self, other):
        return int(self) << int(other)
    def __rlshift__(self, other):
        return int(other) << int(self)
    def __rshift__(self, other):
        return int(self) >> int(other)
    def __rrshift__(self, other):
        return int(other) >> int(self)
    def __and__(self, other):
        return int(self) & int(other)
    def __rand__(self, other):
        return int(other) & int(self)
    def __xor__(self, other):
        return int(self) ^ int(other)
    def __rxor__(self, other):
        return int(other) ^ int(self)
    def __or__(self, other):
        return int(self) | int(other)
    def __ror__(self, other):
        return int(other) | int(self)
    def __invert__(self):
        return ~int(self)
    # Concrete implementations of Rational and Real abstract methods.
    def __float__(self):
        """float(self) == float(int(self))"""
        return float(int(self))
    @property
    def numerator(self):
        """Integers are their own numerators."""
        return +self
    @property
    def denominator(self):
        """Integers have a denominator of 1."""
        return 1

运算及__magic__方法的变更

为了支持从 float 到 int(确切地说,从 Real 到 Integral)的精度收缩,我们提出了以下新的 __magic__ 方法,可以从相应的库函数中调用。所有这些方法都返回 Intergral 而不是 Real。

  1. __trunc__(self):在新的内置 trunc(x) 里调用,它返回从 0 到 x 之间的最接近 x 的 Integral。
  2. __floor__(self):在 math.floor(x) 里调用,返回最大的 Integral <= x。
  3. __ceil__(self):在 math.ceil(x) 里调用,返回最小的 Integral > = x。
  4. __round__(self):在 round(x) 里调用,返回最接近 x 的 Integral ,根据选定的类型作四舍五入。浮点数将从 3.0 版本起改为向偶数端四舍五入。(译注:round(2.5) 等于 2,round(3.5) 等于 4)。它还有一个带两参数的版本__round__(self, ndigits),被 round(x, ndigits) 调用,但返回的是一个 Real。

在 2.6 版本中,math.floor、math.ceil 和 round 将继续返回浮点数。

float 的 int() 转换等效于 trunc()。一般而言,int() 的转换首先会尝试__int__(),如果找不到,再尝试__trunc__()。

complex.__{divmod, mod, floordiv, int, float}__ 也消失了。提供一个好的错误消息来帮助困惑的搬运工会很好,但更重要的是不出现在 help(complex) 中。

给类型实现者的说明

实现者应该注意使相等的数字相等,并将它们散列为相同的值。如果实数有两个不同的扩展,这可能会变得微妙。例如,一个复数类型可以像这样合理地实现 hash():

def __hash__(self):
    return hash(complex(self))

但应注意所有超出了内置复数范围或精度的值。

添加更多数字抽象基类

当然,数字还可能有更多的抽象基类,如果排除了添加这些数字的可能性,这会是一个糟糕的等级体系。你可以使用以下方法在 Complex 和 Real 之间添加MyFoo:

class MyFoo(Complex): ...
MyFoo.register(Real)

实现算术运算

我们希望实现算术运算,使得在混合模式的运算时,要么调用者知道如何处理两种参数类型,要么将两者都转换为最接近的内置类型,并以此进行操作。

对于 Integral 的子类型,这意味着__add__和__radd__应该被定义为:

class MyIntegral(Integral):
    def __add__(self, other):
        if isinstance(other, MyIntegral):
            return do_my_adding_stuff(self, other)
        elif isinstance(other, OtherTypeIKnowAbout):
            return do_my_other_adding_stuff(self, other)
        else:
            return NotImplemented
    def __radd__(self, other):
        if isinstance(other, MyIntegral):
            return do_my_adding_stuff(other, self)
        elif isinstance(other, OtherTypeIKnowAbout):
            return do_my_other_adding_stuff(other, self)
        elif isinstance(other, Integral):
            return int(other) + int(self)
        elif isinstance(other, Real):
            return float(other) + float(self)
        elif isinstance(other, Complex):
            return complex(other) + complex(self)
        else:
            return NotImplemented

对 Complex 的子类进行混合类型操作有 5 种不同的情况。我把以上所有未包含 MyIntegral 和 OtherTypeIKnowAbout 的代码称为“样板”。

a 是 A 的实例,它是Complex(a : A <: Complex) 的子类型,还有 b : B <: Complex。对于 a + b,我这么考虑:

  1. 如果 A 定义了接受 b 的__add__,那么没问题。
  2. 如果 A 走到了样板代码分支(译注:else 分支),还从__add__返回一个值的话,那么我们就错过了为 B 定义一个更智能的__radd__的可能性,因此样板应该从__add__返回 NotImplemented。(或者 A 可以不实现__add__)
  3. 然后 B 的__radd__的机会来了。如果它接受 a,那么没问题。
  4. 如果它走到样板分支上,就没有办法了,因此需要有默认的实现。
  5. 如果 B <: A,则 Python 会在 A.__ add__之前尝试 B.__ radd__。这也可以,因为它是基于 A 而实现的,因此可以在委派给 Complex 之前处理这些实例。

如果 A <: Complex 和 B <: Real 没有其它关系,则合适的共享操作是内置复数的操作,它们的__radd__都在其中,因此 a + b == b + a。(译注:这几段没看太明白,可能译得不对)

被拒绝的方案

本 PEP 的初始版本定义了一个被 Haskell Numeric Prelude 所启发的代数层次结构,其中包括 MonoidUnderPlus、AdditiveGroup、Ring 和 Field,并在得到数字之前,还有其它几种可能的代数类型。

我们原本希望这对使用向量和矩阵的人有用,但 NumPy 社区确实对此并不感兴趣,另外我们还遇到了一个问题,即便 x 是 X <: MonoidUnderPlus 的实例,而且 y 是 Y < : MonoidUnderPlus 的实例,x + y 可能还是行不通。

然后,我们为数字提供了更多的分支结构,包括高斯整数(Gaussian Integer)和 Z/nZ 之类的东西,它们可以是 Complex,但不一定支持“除”之类的操作。

社区认为这对 Python 来说太复杂了,因此我现在缩小了提案的范围,使其更接近于 Scheme 数字塔。

十进制类型

经与作者协商,已决定目前不将 Decimal 类型作为数字塔的一部分。

参考文献

1、抽象基类简介:www.python.org/dev/peps/pe…

2、可能是 Python 3 的类树?Bill Janssen 的 Wiki 页面:wiki.python.org/moin/Abstra…

3、NumericPrelude:数字类型类的实验性备选层次结构:darcs.haskell.org/numericprel…

4、Scheme 数字塔:groups.csail.mit.edu/mac/ftpdir/…

(译注:在译完之后,我才发现“PEP中文翻译计划”已收录过一篇译文,有些地方译得不尽相同,读者们可比对阅读。)

致谢

感谢 Neal Norwitz 最初鼓励我编写此 PEP,感谢 Travis Oliphant 指出 numpy 社区并不真正关心代数概念,感谢 Alan Isaac 提醒我 Scheme 已经做到了,以及感谢 Guido van Rossum 和邮件组里的其他人帮忙完善了这套概念。

版权

该文档已放入公共领域。

源文件:github.com/python/peps…

目录
相关文章
|
14天前
|
存储 Python
Python 数字
Python 数字
20 7
|
18天前
|
Python
Python 获取数字范围内的所有数字
本文介绍了在 Python 中获取指定范围内所有数字的多种方法,包括使用 `range` 函数、列表推导式、`numpy` 库的 `arange` 函数和生成器表达式。通过具体示例详细说明了每种方法的使用方式和应用场景,帮助读者更好地理解和运用这些技术。
20 2
|
8月前
|
开发者 Python
Python中的数字类型
Python中的数字类型
46 0
|
4月前
|
Python
6-18|Python画字母H
6-18|Python画字母H
|
5月前
|
Python
2:Python字符串与数字
这段代码示例展示了Python中的字符串定义、字符串操作(如连接和重复)、基本算术运算以及条件判断。字符串可通过单双引号定义。字符串支持加法(连接)与乘法(重复)。数字变量支持加减乘除等运算。示例还对比了两个条件语句代码块:第一个因使用全角冒号及未闭合字符串引发语法错误;第二个则正确无误,当条件为真时将输出&quot;我是神仙&quot;和&quot;我是高手&quot;。这强调了遵循Python语法规范的重要性。
|
Python
Python|字符串中第二大的数字
Python|字符串中第二大的数字
116 1
|
存储 Python