【MATLAB 】 CEEMDAN 信号分解+模糊熵(近似熵)算法

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【MATLAB 】 CEEMDAN 信号分解+模糊熵(近似熵)算法

【MATLAB 】 CEEMDAN 信号分解+模糊熵(近似熵)算法

微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~

有意向获取代码,请转文末观看代码获取方式~

1 CEEMDAN信号分解算法

CEEMDAN 分解又叫自适应噪声完备集合经验模态分解,英文全称为 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise。

CEEMDAN是对CEEMD的进一步改进,它引入了一种自适应噪声辅助方法,可以更好地处理信号中的高频噪声。CEEMDAN的主要步骤如下:

  1. 对原始信号进行若干次随机噪声扰动,得到多个噪声扰动数据集。
  2. 对每个噪声扰动数据集进行CEEMD分解,得到多个CEEMD分解集合。
  3. 对于每个CEEMD分解集合,引入自适应噪声辅助方法,通过将噪声信号添加到每个局部模态函数中,增强信号的边缘和高频部分。
  4. 将每个自适应噪声辅助后的 CEEMD 分解集合的对应分量进行平均,得到最终的 CEEMDAN 分解结果。 CEEMDAN 分解具有更好的对高频噪声的适应性,能够更准确地分解信号。因此,CEEMDAN 在信号处理、图像处理和模式识别等领域也得到了广泛的应用。

要想在 MATLAB 中使用 EMD 分解首先要安装 EMD 分解的 MATLAB 工具包。

关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~

EMD 工具包的安装:在 MATLAB 打开 package_emd 文件夹,运行 install_emd. M 以及 index_emd. M 两个函数如下图所示即可完成工具包的安装。

MATLAB 信号分解第四期-CEEMDAN:

https://mbd.pub/o/bread/ZJWZmply

信号分解全家桶详情请参见:

https://mbd.pub/o/author-aWWWnHBsYw==/work

2 模糊熵算法

模糊熵算法是一种用于衡量序列复杂度的方法。它基于模糊数学理论,计算一个随机变量的模糊熵。模糊熵的定义是:设X为一个取值范围为[0,1]的随机变量,它的概率密度函数为f(x),则模糊熵H(X)定义为:H(X) = -∫_0^1〖f(x)lnf(x)dx 〗 其中ln为自然对数。

模糊熵算法与近似熵和样本熵类似,模糊熵也用于衡量新模式产生的概率大小。较大的模糊熵表示新模式产生的概率越大,即序列复杂度越大。

在实际应用中,为了计算一个随机变量的模糊熵,需要先确定它的概率密度函数f(x)。当变量的概率密度函数已知时,可以通过上述公式来计算模糊熵。如果一个随机变量只有有限个取值,则可以使用频率分布来估计概率密度函数。

3 近似熵算法

近似熵算法是一种用于衡量序列复杂度的方法。它基于样本数据集中的近似概率分布,计算出近似熵。近似熵的定义是:设X为一个取值范围为[0,1]的随机变量,它的样本集合为{x1,x2,...,xn},则近似熵ApEn(X)定义为:

ApEn(X) = -sum_{i=1}^{m}(p(i|m)log_2 p(i|m))

其中,m是样本集合中的子序列数目,p(i|m)是长度为m的子序列中第i个序列出现的概率。

近似熵算法适用于样本数据集较小的情况,因为它只需要样本集合中的子序列数目和每个子序列的近似概率分布来计算近似熵。在计算过程中,可以根据需要调整子序列的长度m和样本集合的大小n,以获得更准确的结果。

4 代码获取

如下为简短的视频操作教程。

算法代码获取:

https://mbd.pub/o/bread/ZJyTlp9u

关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


1、感谢关注 Lwcah 的个人公众号,有关资源获取,请公众号后台发送推文末的关键词,自助获取。

2、若要添加个人微信号,请后台发送关键词:微信号。

3、若要进微信群:Lwcah 科研技巧群 3。请添加个人微信号后进群(大家沉浸式科研,广告勿扰),不定时更新科研技巧类推文。可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。


记得关注公众号,并设为星标哦~谢谢啦~


目录
相关文章
|
10天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
199 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
6月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)