微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~
有意向获取代码,请转文末观看代码获取方式~
展示出图效果
1 MODWT分解算法
MODWT分解算法是一种基于小波变换的信号分解算法,与EWT分解算法类似,它也可以将信号分解为一系列具有不同频率特性的小波分量。但是,MODWT分解算法在小波分解的过程中采用了模块化分解的方法,即将信号分解为多个具有不同尺度的小波分量,并对每个小波分量进行频域分析。
MODWT分解算法的优点如下:
- 具有良好的频率局部特性,能够准确地提取信号的频率信息。
- 能够适应各种类型的信号,具有较好的通用性。
- 能够有效地处理高频信号,对于突变信号有较好的适应性。
- 能够避免小波变换中的吉布斯现象,对于信号的细节信息有较好的保留。
- 能够提高小波分解的效率,对于大规模数据处理有较好的适应性。
在应用方面,MODWT分解算法可以应用于信号处理、图像处理、地震信号处理等领域,是一种有效的信号分析方法。
MATLAB 信号分解第十二期-MODWT 分解:
https://mbd.pub/o/bread/mbd-ZJWZmptr
信号分解全家桶详情请参见:
https://mbd.pub/o/author-aWWWnHBsYw==/work
2 希尔伯特黄变换
希尔伯特黄变换(Hilbert-Huang Transform,简称HHT)是一种新型的信号分析方法,能够有效地处理非线性、非平稳信号。
对每一个IMF进行希尔伯特变换,可以得到该IMF的解析解。解析解包括一个实部和一个虚部,这两个部分对应于IMF的瞬时频率和瞬时幅值。通过对所有的IMF进行希尔伯特变换,可以得到整个信号的希尔伯特谱。这个谱可以用来分析信号的频率和幅值随时间的变化情况。
希尔伯特黄变换的优点在于其完全自适应性,不需要预设任何参数。此外,该方法能够处理非线性、非平稳信号,因此在许多领域,如地球物理学、生物医学工程等,得到了广泛的应用。
3 边际谱算法
边际谱算法是一种分析非高斯、非线性信号的方法,它基于EMD(经验模式分解)和希尔伯特黄变换(Huang-Hilbert Transform)。
首先,通过EMD将信号分解成一系列固有模态函数(IMF),然后对每个IMF进行希尔伯特变换,得到瞬时频率和瞬时幅值。这些瞬时频率和瞬时幅值构成了信号的希尔伯特谱。
接着,对希尔伯特谱进行边际谱分析。具体来说,将希尔伯特谱的频率和幅值视为二维空间中的一个点,对所有点按照频率进行排序,然后对每个频率点的幅值求和,就得到了边际谱。
通过边际谱,我们可以得到信号在不同频率下的能量分布情况,从而对信号进行分析。这种方法特别适合于处理非高斯、非线性信号。
4 代码获取
如下为简短的视频操作教程。
算法代码获取:
https://mbd.pub/o/bread/ZJyXm55y
https://mbd.pub/o/bread/ZJyXm59r
关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~
1、感谢关注 Lwcah 的个人公众号,有关资源获取,请公众号后台发送推文末的关键词,自助获取。
2、若要添加个人微信号,请后台发送关键词:微信号。
3、若要进微信群:Lwcah 科研技巧群 3。请添加个人微信号后进群(大家沉浸式科研,广告勿扰),不定时更新科研技巧类推文。可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。
记得关注公众号,并设为星标哦~谢谢啦~