【C++类和对象下:解锁面向对象编程的奇妙世界】(上)

简介: 【C++类和对象下:解锁面向对象编程的奇妙世界】

【本节目标】


  • 1. 再谈构造函数
  • 2. Static成员
  • 3. 友元
  • 4. 内部类
  • 5.匿名对象
  • 6.拷贝对象时的一些编译器优化
  • 7. 再次理解封装


1. 再谈构造函数


1.1 构造函数体赋值


在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值。

#include <iostream>
using namespace std;
class Date
{
public:
    Date(int year, int month, int day)
    {
        // 函数体内初始化
        _year = year;
        _month = month;
        _day = day;
    }
private:
    int _year;
    int _month;
    int _day;
};
int main()
{
    Date d1(2023, 11, 7);
    return 0;
}


虽然上述构造函数调用之后,对象中已经有了一个初始值,但是不能将其称为对对象中成员变量 的初始化,构造函数体中的语句只能将其称为赋初值,而不能称作初始化。因为初始化只能初始 化一次,而构造函数体内可以多次赋值。


1.2 初始化列表


初始化列表:以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个"成员变量"后面跟 一个放在括号中的初始值或表达式。

#include <iostream>
using namespace std;
class Date
{
public:
    Date(int year, int month, int day)
        : _year(year)
        , _month(month)
        , _day(day)
    {}// 初始化列表
private:
    int _year;
    int _month;
    int _day;
};
int main()
{
    Date d1(2023, 11, 7);
    return 0;
}


【注意】


1. 每个成员变量在初始化列表中只能出现一次(初始化只能初始化一次)

2. 类中包含以下成员,必须放在初始化列表位置进行初始化:

  • 引用成员变量
  • const成员变量
  • 自定义类型成员(且该类没有默认构造函数时)
#include <iostream>
using namespace std;
class A
{
public:
  A(int a = 1)
    :_a(a)
  {
    cout << "A(int a = 1)" << endl;
  }
private:
  int _a;
};
class B
{
public:
  B(int ref, int year, int month, int day)
    :_ref(ref)
    ,_n(10)
  {
    // 函数体内初始化
    // 这里的三个成员没有在初始化列表显示定义
    // 但是这里也会定义,只是内置类型默认给的随机值
    // 如果时自定义类型成员会去调用它的默认构造函数
    _year = year;
    _month = month;
    _day = day;
  }
private:
  //声明,没有开空间,对象定义时才开空间
  int _year;
  int _month;
  int _day;
  A _aobj;  // 此时有默认构造函数
  int& _ref;  // 引用:必须在定义的时候初始化
  const int _n; // const:必须在定义的时候初始化
};
int main()
{
  //定义:对象整体定义
  //每个成员在初始化列表处定义
  B b(1, 2023, 11, 7);
  return 0;
}


运行结果:


如果我们类A没有默认构造呢?

#include <iostream>
using namespace std;
class A
{
public:
  A(int a)
    :_a(a)
  {
    cout << "A(int a)" << endl;
  }
private:
  int _a;
};
class B
{
public:
  B(int ref, int year, int month, int day)
    :_aobj(1)
    ,_ref(ref)
    ,_n(10)
    ,_year(2) //显示写了就不会用缺省值
  {
    // 函数体内初始化
    // 这里的三个成员没有在初始化列表显示定义
    // 但是这里也会定义,只是内置类型默认给的随机值
    // 如果时自定义类型成员会去调用它的默认构造函数
    _year = year;
    _month = month;
    _day = day;
  }
private:
  //声明,没有开空间,对象定义时才开空间
  int _year = 1;//缺省值给参数列表
  int _month;
  int _day;
  A _aobj;  // 没有默认构造函数
  int& _ref;  // 引用:必须在定义的时候初始化
  const int _n; // const:必须在定义的时候初始化
};
int main()
{
  //定义:对象整体定义
  //每个成员在初始化列表处定义
  B b(1, 2023, 11, 7);
  return 0;
}


总结:自定义类型成员(且该类没有默认构造函数时),我们就要用要初始化列表去初始化。有些自定义成员想要显示初始化,自己控制初始化,尽量使用初始化列表,但是我们也要函数体初始化,因为优秀初始化或者检查的工作,初始化列表不能全部搞定,比如malloc开辟空间的检查。它们能混着用。初始化列表不同同时出现相同的成员,但是初始化列表和函数体可以同时出现。


3. 尽量使用初始化列表初始化,因为不管你是否使用初始化列表,对于自定义类型成员变量, 一定会先使用初始化列表初始化。

#include <iostream>
using namespace std;
class Time
{
public:
    // 默认构造函数之一
  Time(int hour = 0)
    :_hour(hour)
  {
    cout << "Time()" << endl;
  }
private:
  int _hour;
};
class Date
{
public:
  Date(int day)
    //对于自定义类型成员变量, 一定会先使用初始化列表初始化。
  {}
private:
  int _day;
  Time _t;
};
int main()
{
  Date d(1);
    return 0;
}


4. 成员变量在类中声明次序就是其在初始化列表中的初始化顺序,与其在初始化列表中的先后次序无关

#include <iostream>
using namespace std;
class A
{
public:
    A(int a)
        :_a1(a)
        , _a2(_a1)
    {}
    void Print() {
        cout << _a1 << " " << _a2 << endl;
    }
private:
    int _a2;
    int _a1;
};
int main() {
    A aa(1);
    aa.Print();
}


成员变量在类中声明次序就是其在初始化列表中的初始化顺序,这里先初始化的是_a2,用_a1初始化_a2,由于此时_a1还未初始化,所以此时是随机值,随后再初始化_a1,用a初始化_a1,此时显示给了值,所以_a1被初始化为1,建议声明和初始化列表顺序保持一致,避免出现理解问题。


1.3 explicit关键字


构造函数不仅可以构造与初始化对象,对于单个参数或者除第一个参数无默认值其余均有默认值 的构造函数,还具有类型转换的作用。

#include <iostream>
using namespace std;
class A
{
public:
  A(int a)
    :_a(a)
  {}
  A(int *p){}
private:
  int _a = 0;
};
int main()
{
  A a1(1);
  A a2(2);
  // 内置类型对象 隐式转换成自定义类型对象
  // 这里会形成一个临时变量A(3),然后拷贝构造给a3
  // 但是这里支持这个转换是有条件的 - 通过构造函数实现
  // 是有A的int单参数构造函数
  A a3 = 3;
  int* p = nullptr;
  //A a4 = p; // error C2440: “初始化”: 无法从“int *”转换为“A”
  //A(int *p){}写上这个就不会报错了
  // 这里不能引用不是因为类型不同
  // 是因为产生的临时变量具有常属性
  // 这里需要加上const
  // A& ra = 3;//error C2440: “初始化”: 无法从“int”转换为“A &”
  const A& ra = 3;
  return 0;
}


用explicit修饰构造函数,将会禁止构造函数的隐式转换。

#include <iostream>
using namespace std;
class A
{
public:
  explicit A(int a)
    :_a(a)
  {}
private:
  int _a = 0;
};
int main()
{
  A a1(1);
  A a2(2);
  // 内置类型对象 隐式转换成自定义类型对象
  // 这里会形成一个临时变量A(3),然后拷贝构造给a3
  // 但是这里支持这个转换是有条件的 - 通过构造函数实现
  // 是有A的int单参数构造函数
  // 如果不想让隐式类型转换发生,构造函数加上explicit
  //A a3 = 3;//error:C2440: “初始化”: 无法从“int”转换为“A”
  //但是我们可以强转
  A a3 = A(3);
  const A& ra = A(3);
  return 0;
}


多个参数的构造函数,此时还具有具有类型转换作用嘛?C++加入了多个参数的构造函数。

#include <iostream>
using namespace std;
class Date
{
public:
  //多个参数的构造函数,半缺省,其他两个参数给了缺省值
  //隐式转化,同样支持传一个参数的半缺省(全缺省)的构造函数
  Date(int year, int month = 1, int day = 1)
    :_year(year)
    ,_month(month)
    ,_day(day)
  {}
private:
  int _year;
  int _month;
  int _day;
};
int main()
{
  Date d1(2023, 11, 9);
  //这里编译运行通过,但是结果不对
  //这里是逗号表达式,结果year被改为12
  //月份和天数都是默认没有传参,使用的是缺省值
  //等价于Date d2 = 12;
  Date d2 = (2002, 12, 12);
  Date d3 = 2023;
  //多参数
  //C++11支持
  Date d4 = { 2023, 11, 9 };
  //产生临时变量
  const Date& d5 = { 2023, 11, 9 };
  return 0;
}


运行结果:


2. static成员


2.1 概念


声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;用 static修饰的成员函数,称之为静态成员函数静态成员变量一定要在类外进行初始化


问:计算程序中创建出了多少个类对象。

#include <iostream>
using namespace std;
class A
{
public:
  A() {}
  A(const A& t) {}
  ~A() {}
private:
};
A func()
{
  A aa;
  return aa;//传值返回形成一次拷贝
}
int main()
{
  A aa;
  func();
  return 0;
}


我们可以定义一个全局变量count来计算。 bmvv

#include <iostream>
using namespace std;
int count = 0;//定义全局变量
class A
{
public:
  A() { ++count; }
  A(const A& t) { ++count; }
  ~A() {}
private:
};
A func()
{
  A aa;
  return aa;
}
int main()
{
  A aa;
  func();
  cout << count << endl;
  return 0;
}


但是这里代码报错了。


因为C++库中还有一个count函数,和我们这里定义的全局变量出现冲突,这里可以用我们的命名空间解决。

#include <iostream>
using namespace std;
namespace yu 
{
  int count = 0;//定义全局变量
}
class A
{
public:
  A() { ++yu::count; }
  A(const A& t) { ++yu::count; }
  ~A() {}
private:
};
A func()
{
  A aa;
  return aa;
}
int main()
{
  A aa;
  func();
  cout << yu::count << endl;
  return 0;
}


输出结果:


但是这里的全局变量不太好,如果我们后面有一个B类也想求创建了多少个对象,此时还需要将count变量重置为0,太繁琐了。那我们可以将这个count变量变成这个类的成员变量,这样就和其他的类没有冲突了。但是这里要注意一下,此时我们的count是属于某个对象的,每个对象都有一个独自的count变量,此时加加的是每一个对象的count变量,我们这里要将全局变量成为一个类的专属,此时就要使用static修饰该成员变量。

#include <iostream>
using namespace std;
class A
{
public:
  //c++对象都是构造或者拷贝过来的
  A() { ++count; }
  A(const A& t) { ++count; }
  ~A() {}
//private:
  //static int count = 0;//这里不支持给缺省值
  //因为初始化列表是初始化某一个对象,这个count不属于某一个对象
  // 规定类里面声明,类外定义
  static int count;
  //普通的成员变量要走初始化列表,缺省值是给初始化列表的
};
int A::count = 0;//定义
A func()
{
  A aa;
  return aa;
}
int main()
{
  A aa;
  func();
  //公有的情况下访问count
  //属于整个类,属于这个类的所有对象
    //受访问限定符限制
  cout << A::count << endl;
  cout << aa.count << endl;
  cout << &A::count << endl;
  cout << &aa.count << endl;
  return 0;
}

运行结果:


【C++类和对象下:解锁面向对象编程的奇妙世界】(下):https://developer.aliyun.com/article/1425506

相关文章
|
3月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
84 0
|
3月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
164 0
|
5月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
161 12
|
6月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
6月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
6月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
7月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
6月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
124 16
|
7月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
6月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
324 6