【动态内存管理助力程序优化与性能飞升】(下)

简介: 【动态内存管理助力程序优化与性能飞升】

【动态内存管理助力程序优化与性能飞升】(中):https://developer.aliyun.com/article/1424819


demo4:


#include<stdio.h>
#include<stdlib.h>
#include<string.h>
void Test(void)
{
  char* str = (char*)malloc(100);
  strcpy(str, "hello");
  free(str);
  if (str != NULL)
  {
    strcpy(str, "world");
    printf(str);
  }
}
int main()
{
  Test();
  return 0;
}


问题:


       在这段C代码中,首先使用 malloc 动态地分配了 100 字节的内存来存储字符串 "hello"。然后,立即使用 strcpy 将 "hello" 复制到分配的内存块中。接着,使用 free 释放了分配的内存。

然后,代码尝试检查指针 str 是否为 NULL。然而,这是一个错误的做法。因为在调用 free 之后,指针 str 指向内存地址虽然不会发生改变,但是进行指针进行任何操作都是不安全的,并且会导致未定义的行为。


修改:


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void Test(void)
{
    char* str = (char*)malloc(100);
    strcpy(str, "hello");
    free(str); // 释放内存后,str 成为了悬挂指针
    str = NULL;
    // 不要在释放内存后使用指针
    // 这里不再使用 str 指针
}
int main()
{
    Test();
    return 0;
}


5. C/C++程序的内存开辟



C/C++程序内存分配的几个区域:


  1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结 束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是 分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返 回地址等。
  2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS(操作系统)回收 。分 配方式类似于链表。
  3. 数据段(静态区)(static):存放全局变量、静态数据。程序结束后由系统释放。


代码段:存放函数体(类成员函数和全局函数)的二进制代码。


有了这幅图,我们就可以更好的理解在《C语言初识》中讲的static关键字修饰局部变量的例子了。


       实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。 但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁 所以生命周期变长。


6. 柔性数组


       也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。 C99 中,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。

typedef struct st_type
{
    int i;
    int a[];//柔性数组成员
    //int a[0];//也可以写成这个
}type_a;


6.1 柔性数组的特点:


  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof 返回的这种结构大小不包括柔性数组的内存。

  • 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。
type_a* ps = (type_a*)malloc(sizeof(type_a) + 40);


6.2 柔性数组的使用


#include<stdio.h>
#include<stdlib.h>
typedef struct st_type
{
  int i;
  int a[0];//柔性数组成员
}type_a;
int main()
{
  type_a* ps = (type_a*)malloc(sizeof(type_a) + 40);
  if (!ps)
  {
    perror("malloc");
    return 1;
  }
  ps->i = 10;
  int i = 0;
  for (i = 0; i < ps->i; i++)
  {
    ps->a[i] = i;
  }
  //空间不够,realloc增容
  /*
    ps 是要调整的内存地址
    size 调整之后新大小
    返回值为调整之后的内存起始位置。
  */
  type_a* p = (type_a*)realloc(ps, sizeof(type_a) + 60);
  if (!p)
  {
    perror("realloc");
    return 1;
  }
  ps = p;
  ps->i = 15;
  for (i = 0; i < ps->i; i++)
  {
    printf("%d ", ps->a[i]);
  }
    free(ps);
  ps = NULL;
  return 0;
}


运行结果:



6.3 柔性数组的优势


上述的 type_a 结构也可以设计为指针类型:


#include<stdio.h>
#include<stdlib.h>
typedef struct st_type
{
  int i;
  int* a;
}type_a;
int main()
{
  type_a* ps = (type_a*)malloc(sizeof(type_a));//与柔性数组保持一致
  if (!ps)
  {
    perror("malloc");
    return 1;
  }
  ps->i = 10;
  ps->a = (int*)malloc(40);
  if (!ps->a)
  {
    perror("malloc");
    return 1;
  }
  int i = 0;
  for (i = 0; i < ps->i; i++)
  {
    ps->a[i] = i;
  }
  //空间不够,realloc增容
  /*
    ps 是要调整的内存地址
    size 调整之后新大小
    返回值为调整之后的内存起始位置。
  */
  int* p = (int*)realloc(ps->a, 60);
  if (!p)
  {
    perror("realloc");
    return 1;
  }
  ps->a = p;
  ps->i = 15;
  for (i = 0; i < ps->i; i++)
  {
    printf("%d ", ps->a[i]);
  }
  free(ps->a);
  ps->a = NULL;
  free(ps);
  ps = NULL;
  return 0;
}


上述 代码1 和 代码2 可以完成同样的功能,但是 方法1 的实现有两个好处:


第一个好处是:方便内存释放

 如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。


第二个好处是:这样有利于访问速度.

       连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)


扩展阅读:C语言结构体里的成员数组和指针

相关文章
|
2月前
|
缓存 固态存储 Windows
如何让内存发挥到最大效能?全面优化指南,提升电脑运行体验
电脑内存使用不合理会导致卡顿,本文教你如何优化内存性能。检查内存容量与主板支持上限,考虑升级或调整配置;关闭后台程序、管理浏览器标签、结束异常进程以释放内存;设置虚拟内存、调整视觉效果、定期重启提升效率;必要时增加内存条、选择高频内存、更换固态硬盘。避免盲目清理内存和依赖大内存忽视其他硬件瓶颈。只需合理设置,无需额外花钱,就能显著提升电脑速度。
|
2月前
|
存储 人工智能 自然语言处理
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
141 4
AI代理内存消耗过大?9种优化策略对比分析
|
5月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
956 0
|
3月前
|
缓存 监控 Cloud Native
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
本文深入解析了Java Solon v3.2.0框架的实战应用,聚焦高并发与低内存消耗场景。通过响应式编程、云原生支持、内存优化等特性,结合API网关、数据库操作及分布式缓存实例,展示其在秒杀系统中的性能优势。文章还提供了Docker部署、监控方案及实际效果数据,助力开发者构建高效稳定的应用系统。代码示例详尽,适合希望提升系统性能的Java开发者参考。
157 4
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
|
3月前
|
存储 自然语言处理 算法
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
本文探讨了在构建对话系统时如何通过一种内存高效算法降低大语言模型(LLM)的Token消耗和运营成本。传统方法中,随着对话深度增加,Token消耗呈指数级增长,导致成本上升。
283 7
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
|
4月前
|
缓存 编解码 Android开发
Android内存优化之图片优化
本文主要探讨Android开发中的图片优化问题,包括图片优化的重要性、OOM错误的成因及解决方法、Android支持的图片格式及其特点。同时介绍了图片储存优化的三种方式:尺寸优化、质量压缩和内存重用,并详细讲解了相关的实现方法与属性。此外,还分析了图片加载优化策略,如异步加载、缓存机制、懒加载等,并结合多级缓存流程提升性能。最后对比了几大主流图片加载框架(Universal ImageLoader、Picasso、Glide、Fresco)的特点与适用场景,重点推荐Fresco在处理大图、动图时的优异表现。这些内容为开发者提供了全面的图片优化解决方案。
161 1
|
8月前
|
存储 设计模式 监控
快速定位并优化CPU 与 JVM 内存性能瓶颈
本文介绍了 Java 应用常见的 CPU & JVM 内存热点原因及优化思路。
888 166
|
6月前
|
数据采集 Web App开发 调度
Headless Chrome 优化:减少内存占用与提速技巧
在数据驱动的时代,爬虫技术至关重要。本文聚焦 Headless Chrome 优化方案,解决传统爬虫内存占用高、效率低等问题。通过无界面模式、代理 IP等配置,显著降低资源消耗并提升速度。实际案例中,该方案用于采集汽车点评数据,性能提升明显:内存占用降低 30%-50%,页面加载提速 40%-60%。结合技术架构图与演化树,全面解析爬虫技术演进,助力高效数据采集。
274 0
Headless Chrome 优化:减少内存占用与提速技巧
|
6月前
|
存储 设计模式 监控
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
147 0
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
|
7月前
|
缓存 NoSQL Linux
Linux系统内存使用优化技巧
交换空间(Swap)的优化 禁用 Swap sudo swapoff -a 作用:这个命令会禁用系统中所有的 Swap 空间。swapoff 命令用于关闭 Swap 空间,-a 参数表示关闭 /etc/fstab 文件中配置的所有 Swap 空间。 使用场景:在高性能应用场景下,比如数据库服务器或高性能计算服务器,禁用 Swap 可以减少磁盘 I/O,提高系统性能。
270 3