使用Python进行数据库增删改查的示例代码

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 使用Python进行数据库增删改查的示例

下面是一个使用Python进行数据库增删改查的示例,以MySQL数据库为例:

import mysql.connector

# 连接数据库
conn = mysql.connector.connect(
    host="localhost",
    user="root",
    password="password",
    database="mydatabase"
)
cursor = conn.cursor()

# 查询数据
def select_data():
    cursor.execute("SELECT * FROM mytable")
    result = cursor.fetchall()
    for row in result:
        print(row)

# 插入数据
def insert_data(name, age):
    sql = "INSERT INTO mytable (name, age) VALUES (%s, %s)"
    values = (name, age)
    cursor.execute(sql, values)
    conn.commit()
    print("数据插入成功")

# 更新数据
def update_data(id, new_age):
    sql = "UPDATE mytable SET age = %s WHERE id = %s"
    values = (new_age, id)
    cursor.execute(sql, values)
    conn.commit()
    print("数据更新成功")

# 删除数据
def delete_data(id):
    sql = "DELETE FROM mytable WHERE id = %s"
    values = (id,)
    cursor.execute(sql, values)
    conn.commit()
    print("数据删除成功")

# 查询数据
select_data()

# 插入数据
insert_data("John", 25)

# 更新数据
update_data(1, 30)

# 删除数据
delete_data(2)

# 查询数据
select_data()

# 关闭数据库连接
cursor.close()
conn.close()

上述代码中,mysql.connector用于连接MySQL数据库。首先使用connect()方法连接到数据库,并创建cursor对象用于执行SQL语句。

然后定义了四个函数来进行数据库操作,分别是select_data()用于查询数据,insert_data()用于插入数据,update_data()用于更新数据,以及delete_data()用于删除数据。每个函数都执行对应的SQL语句,并通过execute()方法执行,最后通过commit()方法提交更改。

在代码的最后,分别调用这些函数来执行对应的操作,最后关闭数据库连接。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
6天前
|
SQL 关系型数据库 API
HarmonyOs开发:关系型数据库封装之增删改查
每个方法都预留了多种调用方式,比如使用callback异步回调或者使用Promise异步回调,亦或者同步执行,大家在使用的过程中,可以根据自身业务需要进行选择性调用,也分别暴露了成功和失败的方法,可以针对性的判断在执行的过程中是否执行成功。
61 13
|
2月前
|
关系型数据库 MySQL 数据库连接
python脚本:连接数据库,检查直播流是否可用
【10月更文挑战第13天】本脚本使用 `mysql-connector-python` 连接MySQL数据库,检查 `live_streams` 表中每个直播流URL的可用性。通过 `requests` 库发送HTTP请求,输出每个URL的检查结果。需安装 `mysql-connector-python` 和 `requests` 库,并配置数据库连接参数。
136 68
|
26天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
181 15
|
3月前
|
关系型数据库 MySQL 数据处理
探索Python中的异步编程:从asyncio到异步数据库操作
在这个快节奏的技术世界里,效率和性能是关键。本文将带你深入Python的异步编程世界,从基础的asyncio库开始,逐步探索到异步数据库操作的高级应用。我们将一起揭开异步编程的神秘面纱,探索它如何帮助我们提升应用程序的性能和响应速度。
|
3月前
|
Web App开发 SQL 数据库
使用 Python 解析火狐浏览器的 SQLite3 数据库
本文介绍如何使用 Python 解析火狐浏览器的 SQLite3 数据库,包括书签、历史记录和下载记录等。通过安装 Python 和 SQLite3,定位火狐数据库文件路径,编写 Python 脚本连接数据库并执行 SQL 查询,最终输出最近访问的网站历史记录。
52 4
|
3月前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
573 3
|
3月前
|
前端开发 Java 数据库连接
javamvc配置,增删改查,文件上传下载。
【10月更文挑战第4天】javamvc配置,增删改查,文件上传下载。
42 1
|
3月前
|
存储 NoSQL API
使用Py2neo进行Neo4j图数据库的增删改查操作
使用Py2neo进行Neo4j图数据库的增删改查操作
130 5
|
3月前
|
SQL 机器学习/深度学习 数据采集
SQL与Python集成:数据库操作无缝衔接22.bijius.com
自动化数据预处理:使用Python库(如Pandas)自动清洗、转换和准备数据,为机器学习模型提供高质量输入。 实时数据处理:集成Apache Kafka或Amazon Kinesis等流处理系统,实现实时数据更新和分析。
|
3月前
|
关系型数据库 MySQL 数据库
Mysql学习笔记(四):Python与Mysql交互--实现增删改查
如何使用Python与MySQL数据库进行交互,实现增删改查等基本操作的教程。
76 1