阿里云 ACK 云原生 AI 套件中的分布式弹性训练实践

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 阿里云 ACK 云原生 AI 套件中的分布式弹性训练实践

作者:霍智鑫


众所周知,随着时间的推移,算力成为了 AI 行业演进一个不可或缺的因素。在数据量日益庞大、模型体量不断增加的今天,企业对分布式算力和模型训练效率的需求成为了首要的任务。如何更好的、更高效率的以及更具性价比的利用算力,使用更低的成本来训练不断的迭代 AI 模型,变成了迫切需要解决的问题。而分布式训练的演进很好的体现了 AI 模型发展的过程。


Distributed Training


分布式训练一般分为两种类型,数据并行和模型并行。数据并行是指每个训练 Worker 都保存有一份模型的副本,然后将大规模的数据进行切分,分布到每个训练 Worker 上进行计算,最后再进行集合通信统一计算结果的过程。在相当一段的时间内,该种模式是分布式训练的主流模式,因为模型的规模足以放进单个训练 Worker 之中,而数据的规模才是整体训练效率的瓶颈。利用分布式数据并行可以充分利用集群中的算力资源,并行处理庞大的数据集,以达到加速训练的效果。


而模型并行则是在模型非常庞大的情况下将模型进行切分,分布到不同的训练 Worker 中,然后训练数据按照模型的结构分布经过不同的训练 Worker,以达到用分布式的算力来训练大模型的效果。现在的大语言模型由于其体量的庞大,所以一般都是使用模型并行的模式来进行训练。



基于数据并行的分布式训练又分为两种不同的架构。


  • Parameter Server 架构:
    有一个中心化的 Parameter Server 用来存储分布式训练的梯度,每一个训练 Worker 在进行每个 Step 的训练前都需要先从 Parameter Server 中先 pull 到最新的梯度信息,在这个 step 训练结束后再将训练的结果梯度 push 到 Parameter Server。在 Tensorflow 中,PS 模式的训练一般为异步的分布式训练,该情况下对于任务的全部 Worker 来说,其无需等待其他 Worker 的训练流程去同步梯度,只需要根据流程完成自身的训练即可。这种模式多用于基于 Tensorflow 的搜推广场景。
  • AllReduce 架构:一个去中心化的同步的分布式训练模式,在分布式训练中一般采用 Ring-All Reduce,每个训练 Worker 只与自身左右 Rank 的 Worker 进行通信,这样就能形成一个通信环,经过环形通信可以使得每一个 Worker 中的梯度都同步到了其他的 Worker 中并完成计算。这种模式多用于 CV、NLP 的应用场景。



Elastic Training


上面我们介绍了分布式训练,现在来了解一下弹性分布式训练。什么是弹性训练?具体可以总结为三大块的能力:


  • 训练规模弹性改变:这里主要指的是弹性改变训练的 Worker 数目,扩容增加 Worker 数量以提升训练速度,缩容减少 Worker 数量以腾出部分集群资源;
  • 训练过程弹性容错:由于部分因素导致任务异常或可预见问题如 Spot 回收事件预示下的整体任务的容错,避免因为少部分 Worker 失败而直接导致的整个任务的失败;
  • 训练资源弹性伸缩:可以根据任务需要或者问题处理的判断来动态变更任务训练 Worker 的资源配置以达到一个更合理的任务 Worker 资源配比。



而弹性训练的能力带来的意义,大概也可以总结为三点:


1. 大规模分布式训练容错,有效提升训练任务运行的成功率;

2. 提升集群算力利用率,充分利用弹性来协调在离线任务的资源分配;

3. 降低任务训练成本,使用可被抢占或稳定性稍差但成本更低的实例来进行训练从而整体层面降低成本。



PS Elastic Training

在 PS 模式下进行的弹性训练,由于其为异步模式,弹性的关键在于训练数据的划分。当其中一部分 Worker 失败之后,未被训练的数据或者失败 Worker 中的数据可以被剩下的 Worker 继续训练,当新的 Worker 加入之后,可以与现有的 Worker 一起参与进行训练。



DLRover

在蚂蚁 AI Infra 团队开源的项目 DLRover 中,其实现了 Training Master 来参与弹性训练。由 Training Master 来负责对任务的监听、数据集的划分、各角色资源的弹性。其中数据集的划分是弹性训练的关键,在 Master 中有一个 Dataset Shard Service 的角色来负责具体数据集的划分。


其将整个的数据集按照 Batch Size 进行切分,分为各个 Task Data,然后将 Task Data 放进数据集队列中供各个训练 Worker 进行消费。在 Dataset Shard Service 中存在着两个队列,所有未被训练消费的 Task Data 在 TODO 队列中,而正在被训练的 Task Data 则是在 DOING 队列,直到该 Data 训练结束 Worker 给出信号后,该 Task Data 才会完全出队。如果有训练 Worker 中途异常退出,检测超时的 Task Data 会重新进入 TODO 队列以供其他正常 Worker 进行训练。



DLRover 在 Kubernetes 上设计了一个 CRD ElasticJob,由 ElasticJob Controller 监听并创建一个 DLRover Master,再由该 Master 来创建 PS 和 Worker 的 Pod,并控制 PS 和 Worker 的弹性。



AllReduce Elastic Training

在 AllReduce 模式下进行的弹性训练,由于其为同步模式,弹性的关键在于如何保证训练的同步,同时还有为了同步梯度而建立起来的通信环的保持。当其中一部分 Worker 失败之后,剩下的 Worker 可以重建通信环继续训练,当新的 Worker 加入之后,可以与现有的 Worker 重建通信环进行训练。



Elastic Pytorch

Elastic Pytorch 是 Pytorch 中 AllReduce 模式的弹性分布式训练,其本质在每个 Worker 上启动一个 Elastic Agent,利用该 agent 的 monitor 对各个训练进程进行 listen,并且根据 Worker 进程的正常与否的情况来动态的在 Master 中的 Rendezvous Server 中进行注册 Worker 的信息,从而完成整个训练任务过程的弹性。目前这个过程可以在 Kubernetes 中利用 Pytorch Operator 运行。



Elastric Horovod

Horovod 是一个分布式的弹性训练框架,可以应用于 Tensorflow 或者 Pytorch 的分布式训练。同样是 AllReduce 模式的弹性分布式训练,Elastic Horovod 可以在运行过程中动态的自行触发调整训练 Worker 的数量,而不需要重启整个训练任务或者重新从持久化的 Checkpoint 中恢复训练状态,从而达到避免中断训练任务的目的。



为了可以在 Kubernetes 上很好的运行 Elastic Horovod,ACK 团队实现了 Elastic Training Operator,其中有三个 CR。TrainingJob 是运行 Elastic Horovod 的任务承载,ScaleIn、ScaleOut 则分别作为任务缩容和扩容的触发 CR。用户可以通过以上三个 CR 来达到完成整个 Horovod Elastic 过程的目的。



用户可以通过提交 TrainingJob 来提交自己的 Elastic Horovod 任务,通过提交 ScaleIn 和 ScaleOut 来提交这个 Elastic Horovod 任务的缩容和扩容动作任务。



ACK 云原生 AI 套件 Elastic Training


基于上面几种(DLRover、Elastic Pytorch、Elastic Horovod)在 Kubernetes 中的弹性训练框架的方案,云原生 AI 套件提出了在 Spot 场景下的云原生 AI 弹性训练解决方案:


随着模型不断增大,AI 作业训练成本不断攀升,节省成本逐渐称为各行各业的关键命题。面向在 ACK 上做 AI 模型训练且成本敏感的客户,ACK 云原生 AI 套件在 ACK 上期望推广的弹性训练场景为基于抢占式实例 Spot 的弹性节点池作为底层训练资源的云原生 AI 弹性训练解决方案。


整体方案的目标在于以下几点:

1. 期望将更多类型更多训练场景的 AI 训练任务在集群中以弹性的方式尽可能多的运行在成本更低的抢占式实例上;

2. 这些训练任务可以根据客户需求动态的占用集群中空闲的资源,以达到资源利用率提升的目的;3. 使用该种弹性训练方式对客户 AI 训练任务的精度影响处于一个可以接受的范围内,不影响其最终的效果表现;

4. 使用该种弹性训练方式可以使得客户的训练任务不会因为资源回收或者其他原因而导致整个任务进程的中断,进而丢失训练结果。


目前在 ACK 上,ACK 云原生 AI 套件提供了对 Elastic Horovod、DLRover (Tensorflow PS)、Elastic Pytorch 的支持,可以覆盖对 NLP、CV、搜推广场景的 AI 训练任务的支持,基本上涵盖了目前市面上的绝大多数的 AI 任务训练场景。



ACK 云原生 AI 套件提供了一个弹性训练控制组件 Elastic-Job-Supervisor,Elastic-Job-Supervisor 目前主要面向 Spot 场景做各个场景下弹性训练的控制。其可提供的 Spot 场景下的弹性训练能力有:


Max Wait Time:若最大等待时长之前无法满足训练任务的资源请求时,则任务终止资源的等待,避免部分 Worker 申请资源后造成的浪费;



Checkpoint Saving:拥有实例回收通知机制,使得训练任务在接收到抢占式实例回收的通知时进行自动的 Checkpoint Save 操作,以避免训练结果的丢失;



Fail Tolerance:提交了一个分布式弹性训练任务,当部分实例被回收时,该分布式训练任务可以做到仍继续运行,不会因为部分 Worker 的回收而导致中断;



Job Recovery:当集群中重新加入训练可用资源时,之前由于资源不足而 Suspended 的任务可以重新拉起继续进行训练,或者之前被缩容的分布式训练任务可以自动扩容到预设的 Replica 进行训练,这里又分为两种策略:


  • 如果不满足预设的 Worker 数目,任务就会一直 Pending,知道满足了资源要求才会重启 Worker 恢复训练任务,该种情况下因为总 Worker 数不变,所以 Global Batch Size 就不变,进而最终精度也会得到保证。问题就在对资源是强要求,可能处在一直等待资源的状态中;
  • 可以接受动态改变 Worker 的数量进行训练,即使不满足预设的 Worker 数量仍然不影响训练,也就是动态改变了 Global Batch 的大小。这种情况下是会影响模型最终训练的精度,可以通过选择合适的 Optimizer 算法和 Learning Rate 调整算法来尽可能的保证精度,或者使用梯度累积等方法来保证精度;




Cost Observability:在使用抢占式实例进行训练时,可以利用 ACK 的 FinOps 对整体的训练成本的监控计算,展示基于抢占式实例 Spot 的弹性训练带来的成本节省。




可以通过例子看到,通过实验验证,不同类型的分布式训练的副本数在一定的范围进行弹性的改变,加以一些相关的优化,其对精度的影响均处于可以接受的范围之内。在成本方面,通过在抢占式实例 Spot 上进行弹性变化 Worker 数量,可以在整体上将整个训练任务的花费成本降低到一个比较可观的值。与正常的按量付费云资源比起来,在 ResNet 上的测试可以达到 92% 的成本节省,在 BERT 上的测试可以达到 81% 的成本节省。


目前在较为热门的 LLM 场景下,ACK 云原生 AI 套件正在积极探索 DeepSpeed 等 LLM 训练框架下的弹性训练方案,以求将降低成本、提升训练成功率、提升资源利用率的效果用在 LLM 的训练之中。


欢迎扫码添加阿里云 ACK 云原生 AI 套件微信小助手邀您进入云原生 AI 套件微信交流群,或扫描右侧钉钉群码进入钉钉群。



点击此处,了解 ACK 云原生 AI 套件产品详情。


新年首站丨云原生技术实践营上海站邀您一起担任出品人

本次活动将聚焦容器、可观测、微服务领域,以云原生 AI 工程化落地为主要方向。现在,我们诚邀您在报名参加本次活动的同时,参与活动议题的共创,讲什么,听你的!


  • 线下活动时间:2024 年 01 月 05 日 13:30-18:00
  • 线下活动地点:上海市阿里巴巴徐汇滨江园区 X 区 X7-301 龙门书院
  • 议题共创时间:2023 年 12 月 19 日至 12 月 22 日


01 月 05 日活动现场,参与活动议题共创且到场的前 50 名朋友,可获得阿里云精美周边纪念品一套~


进入链接或扫描海报二维码,立即开启议题共创之旅:

https://survey.aliyun.com/apps/zhiliao/epx_NWegl


相关实践学习
通过workbench远程登录ECS,快速搭建Docker环境
本教程指导用户体验通过workbench远程登录ECS,完成搭建Docker环境的快速搭建,并使用Docker部署一个Nginx服务。
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
2天前
|
机器学习/深度学习 数据采集 人工智能
构建高效AI模型:深度学习优化策略和实践
【5月更文挑战第26天】 在人工智能的浪潮中,深度学习作为一项核心技术,其模型构建与优化一直是研究的热点。本文旨在探讨如何通过一系列创新性的优化策略提升深度学习模型的性能及效率。我们将从理论与实践两个维度出发,详细阐述包括数据预处理、网络结构设计、损失函数选择、正则化技巧以及超参数调整等方面的优化措施。通过这些策略的综合运用,可以显著提高模型的准确性,降低过拟合风险,并缩短训练时间,为AI领域的研究者和工程师提供有价值的参考。
|
8天前
|
存储 弹性计算 Kubernetes
【阿里云云原生专栏】深入解析阿里云Kubernetes服务ACK:企业级容器编排实战
【5月更文挑战第20天】阿里云ACK是高性能的Kubernetes服务,基于开源Kubernetes并融合VPC、SLB等云资源。它提供强大的集群管理、无缝兼容Kubernetes API、弹性伸缩、安全隔离及监控日志功能。用户可通过控制台或kubectl轻松创建和部署应用,如Nginx。此外,ACK支持自动扩缩容、服务发现、负载均衡和持久化存储。多重安全保障和集成监控使其成为企业云原生环境的理想选择。
156 3
|
11天前
|
机器学习/深度学习 人工智能 算法
【AI】从零构建深度学习框架实践
【5月更文挑战第16天】 本文介绍了从零构建一个轻量级的深度学习框架tinynn,旨在帮助读者理解深度学习的基本组件和框架设计。构建过程包括设计框架架构、实现基本功能、模型定义、反向传播算法、训练和推理过程以及性能优化。文章详细阐述了网络层、张量、损失函数、优化器等组件的抽象和实现,并给出了一个基于MNIST数据集的分类示例,与TensorFlow进行了简单对比。tinynn的源代码可在GitHub上找到,目前支持多种层、损失函数和优化器,适用于学习和实验新算法。
74 2
|
13天前
|
Kubernetes Cloud Native 持续交付
构建高效稳定的云原生应用:容器编排与微服务治理实践
【5月更文挑战第14天】 随着企业数字化转型的深入,云原生技术以其弹性、敏捷和可扩展的特性成为现代应用开发的首选模式。本文将探讨如何通过容器编排工具如Kubernetes以及微服务架构的有效治理,构建和维护高效且稳定的云原生应用。我们将分析容器化技术的优势,并结合案例讨论在多云环境下实现持续集成、持续部署(CI/CD)的最佳实践,同时解决微服务带来的分布式复杂性问题。通过本文的阐述,读者将获得一套提升系统可靠性和业务连续性的策略框架。
19 0
|
13天前
|
运维 Kubernetes Cloud Native
构建高效云原生运维体系:Kubernetes最佳实践
【5月更文挑战第9天】 在动态和快速演变的云计算环境中,高效的运维是确保应用稳定性与性能的关键。本文将深入探讨在Kubernetes环境下,如何通过一系列最佳实践来构建一个高效且响应灵敏的云原生运维体系。文章不仅涵盖了容器化技术的选择与优化、自动化部署、持续集成/持续交付(CI/CD)流程的整合,还讨论了监控、日志管理以及灾难恢复策略的重要性。这些实践旨在帮助运维团队有效应对微服务架构下的复杂性,确保系统可靠性及业务的连续性。
|
13天前
|
Kubernetes Cloud Native 持续交付
【Docker专栏】Kubernetes与Docker:协同构建云原生应用
【5月更文挑战第7天】本文探讨了Docker和Kubernetes如何协同构建和管理云原生应用。Docker提供容器化技术,Kubernetes则负责容器的部署和管理。两者结合实现快速部署、自动扩展和高可用性。通过编写Dockerfile创建镜像,然后在Kubernetes中定义部署和服务进行应用暴露。实战部分展示了如何部署简单Web应用,包括编写Dockerfile、构建镜像、创建Kubernetes部署配置以及暴露服务。Kubernetes还具备自动扩展、滚动更新和健康检查等高级特性,为云原生应用管理提供全面支持。
【Docker专栏】Kubernetes与Docker:协同构建云原生应用
|
13天前
|
Kubernetes Cloud Native 持续交付
构建高效云原生应用:Kubernetes与微服务架构的融合
【5月更文挑战第6天】 在数字化转型的浪潮中,企业正迅速采纳云原生技术以实现敏捷性、可扩展性和弹性。本文深入探讨了如何利用Kubernetes这一领先的容器编排平台,结合微服务架构,构建和维护高效、可伸缩的云原生应用。通过分析现代软件设计原则和最佳实践,我们提出了一个综合指南,旨在帮助开发者和系统架构师优化云资源配置,提高部署流程的自动化水平,并确保系统的高可用性。
34 1
|
13天前
|
Kubernetes Cloud Native Go
Golang深入浅出之-Go语言中的云原生开发:Kubernetes与Docker
【5月更文挑战第5天】本文探讨了Go语言在云原生开发中的应用,特别是在Kubernetes和Docker中的使用。Docker利用Go语言的性能和跨平台能力编写Dockerfile和构建镜像。Kubernetes,主要由Go语言编写,提供了方便的客户端库与集群交互。文章列举了Dockerfile编写、Kubernetes资源定义和服务发现的常见问题及解决方案,并给出了Go语言构建Docker镜像和与Kubernetes交互的代码示例。通过掌握这些技巧,开发者能更高效地进行云原生应用开发。
64 1
|
13天前
|
机器学习/深度学习 人工智能 算法
深入理解与实践:基于AI的软件测试自动化
【5月更文挑战第1天】随着人工智能的不断发展,其在软件测试中的应用也日益广泛。本文将探讨如何利用AI进行软件测试自动化,包括其理论基础、实现方式以及在实际中的应用。我们将通过实例分析,展示AI在提高软件测试效率和质量方面的巨大潜力。
|
13天前
|
机器学习/深度学习 人工智能 算法
【Python 机器学习专栏】强化学习在游戏 AI 中的实践
【4月更文挑战第30天】强化学习在游戏AI中展现巨大潜力,通过与环境交互和奖励信号学习最优策略。适应性强,能自主探索,挖掘出惊人策略。应用包括策略、动作和竞速游戏,如AlphaGo。Python是实现强化学习的常用工具。尽管面临训练时间长和环境复杂性等挑战,但未来强化学习将与其他技术融合,推动游戏AI发展,创造更智能的游戏体验。

相关产品

  • 容器服务Kubernetes版