Reactor实现原理及代码示例

简介: Reactor实现原理及代码示例

回顾

上篇文章我们学习了IO相关的知识,今天我们来聊聊基于IO复用模型的Reactor的实现及原理。

一、什么是Reactor

在处理web请求时,通常有两种体系结构,分别是:thread-based architecture(基于线程)和 event-driven architecture(事件驱动)。

1.1 thread-based architecture

基于线程的体系结构,通常使用多线程来处理客户端请求,每当收到一个客户端请求,就创建一个线程处理该请求。这种设计思路很简单,但是有一个致命的缺陷,就是只使用于并发量不大的场景下。因为线程需要占用内存和CPU资源,且操作系统在线程之间切换也有一定的开销,当线程数量达到一定数量后,该web服务可能就“疲于奔命”了。

基于线程的服务端代码示例:

#include <stdio.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <fcntl.h>
#include <unistd.h>
#include <pthread.h>
#define BUFFER_LENGTH 128
// thread --> fd
void *routine(void *arg) {
  int clientfd = *(int *)arg;
  while (1) {
    unsigned char buffer[BUFFER_LENGTH] = {0};
    int ret = recv(clientfd, buffer, BUFFER_LENGTH, 0);
    if (ret == 0) {
      close(clientfd);
      break;
    }
    printf("buffer : %s, ret: %d\n", buffer, ret);
    ret = send(clientfd, buffer, ret, 0); // 
  }
}
int main() 
{
  // 创建监听fd
  int listenfd = socket(AF_INET, SOCK_STREAM, 0);  // 
  if (listenfd == -1) return -1;
  struct sockaddr_in servaddr;
  servaddr.sin_family = AF_INET;
  servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
  servaddr.sin_port = htons(9999);
  // 绑定
  if (-1 == bind(listenfd, (struct sockaddr*)&servaddr, sizeof(servaddr))) {
    return -2;
  }
  // 设置listenfd为非阻塞模式
  // int flag = fcntl(listenfd, F_GETFL, 0);
  // flag |= O_NONBLOCK;
  // fcntl(listenfd, F_SETFL, flag);
  listen(listenfd, 10); // 默认listenfd为阻塞模式
  while (1) {
    struct sockaddr_in client;
    socklen_t len = sizeof(client);
    // 阻塞等待客户端连接上来
    int clientfd = accept(listenfd, (struct sockaddr*)&client, &len);
    pthread_t threadid;
    // 为连接上来的客户端fd,创建线程,并叫该客户端fd作为参数传入,线程处理函数
    pthread_create(&threadid, NULL, routine, &clientfd);
  }
  return 0;
}
1.2 event-driven architecture,事件驱动

事件驱动体系结构是目前使用较为广泛的一种。这种方式会定义一系列事件处理器来响应对应的事件,在服务端做到连接处理和事件处理分离。

Reactor就是event-driven architecture的一种实现方式,处理多个客户端向服务端发送请求的场景。Reactor会解耦并发请求,并分发到对应的时间处理器去处理。目前,许多流行的开源框架都用到了reactor模式,如Redis、netty、nginx等等。

Reactor主要由以下几个角色构成:

  • 文件描述符(Linux,在windows环境下叫句柄):发生在 fd 上的事件可以有:连接、读事件和写事件。
  • 同步事件分离器:本质上是系统调用,如:Linux中的select、poll和epoll。
  • 初始分发器:当select、poll或epoll 检测到 fd 有事件发生时,会调用特定的回调函数。
  • 事件处理器:通常会定义一些回调函数。fd 上有事件发生,执行对应的回调函数。

代码示例

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>
#define BUFFER_LENGTH   4096
#define MAX_EPOLL_EVENTS  1024
#define SERVER_PORT     8888
#define PORT_COUNT      1
typedef int NCALLBACK(int ,int, void*);
int recv_cb(int fd, int events, void *arg);
int send_cb(int fd, int events, void *arg);
struct ntyevent *ntyreactor_idx(struct ntyreactor *reactor, int sockfd);
struct ntyevent {
  int fd;
  int events;
  void *arg;
  int (*callback)(int fd, int events, void *arg);
  int status;
  char buffer[BUFFER_LENGTH];
  int length;
  long last_active;
};
struct eventblock {
  struct eventblock *next;
  struct ntyevent *events;
};
struct ntyreactor {
  int epfd;
  int blkcnt;
  struct eventblock *evblk; //fd --> 100w
};
// 初始化ntyevent对象(设置fd,绑定回调,给回调传参等)
void nty_event_set(struct ntyevent *ev, int fd, NCALLBACK callback, void *arg) {
  ev->fd = fd;
  ev->callback = callback;
  ev->events = 0;
  ev->arg = arg;
  ev->last_active = time(NULL);
  return ;  
}
int nty_event_add(int epfd, int events, struct ntyevent *ev) {
  struct epoll_event ep_ev = {0, {0}};
  ep_ev.data.ptr = ev;
  ep_ev.events = ev->events = events;
  int op;
  if (ev->status == 1) {
    op = EPOLL_CTL_MOD;
  } else {
    op = EPOLL_CTL_ADD;
    ev->status = 1;
  }
  if (epoll_ctl(epfd, op, ev->fd, &ep_ev) < 0) {
    printf("event add failed [fd=%d], events[%d]\n", ev->fd, events);
    return -1;
  }
  return 0;
}
// 将ntyevent对象从 epoll集合中删除
int nty_event_del(int epfd, struct ntyevent *ev) {
  struct epoll_event ep_ev = {0, {0}};
  if (ev->status != 1) {
    return -1;
  }
  ep_ev.data.ptr = ev;
  ev->status = 0;
  epoll_ctl(epfd, EPOLL_CTL_DEL, ev->fd, &ep_ev);
  return 0;
}
int recv_cb(int fd, int events, void *arg) {
  struct ntyreactor *reactor = (struct ntyreactor*)arg;
  struct ntyevent *ev = ntyreactor_idx(reactor, fd);
  int len = recv(fd, ev->buffer, BUFFER_LENGTH , 0); // 
  nty_event_del(reactor->epfd, ev);   // 删除该对象的读事件
  if (len > 0) {
    ev->length = len;
    ev->buffer[len] = '\0';
    printf("C[%d]:%s\n", fd, ev->buffer)
    nty_event_set(ev, fd, send_cb, reactor);
    nty_event_add(reactor->epfd, EPOLLOUT, ev);  // 加入该对象的写事件
  } else if (len == 0) {
    close(ev->fd);
    //printf("[fd=%d] pos[%ld], closed\n", fd, ev-reactor->events);
  } else {
    close(ev->fd);
    printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
  }
  return len;
}
int send_cb(int fd, int events, void *arg) {
  struct ntyreactor *reactor = (struct ntyreactor*)arg;
  struct ntyevent *ev = ntyreactor_idx(reactor, fd);
  // 填充完数据返回给客户端
  int len = send(fd, ev->buffer, ev->length, 0);
  if (len > 0) {
    printf("send[fd=%d], [%d]%s\n", fd, len, ev->buffer);
    nty_event_del(reactor->epfd, ev);     // 删除写事件
    nty_event_set(ev, fd, recv_cb, reactor);
    nty_event_add(reactor->epfd, EPOLLIN, ev);  // 加入读事件
  } else {
    close(ev->fd);
    nty_event_del(reactor->epfd, ev);
    printf("send[fd=%d] error %s\n", fd, strerror(errno));
  }
  return len;
}
// 将连接上来的client fd,创建ntyevent对象,并绑定recv_cb,加入到epoll集合
int accept_cb(int fd, int events, void *arg) {
  struct ntyreactor *reactor = (struct ntyreactor*)arg;
  if (reactor == NULL) return -1;
  struct sockaddr_in client_addr;
  socklen_t len = sizeof(client_addr);
  int clientfd;
  if ((clientfd = accept(fd, (struct sockaddr*)&client_addr, &len)) == -1) {
    if (errno != EAGAIN && errno != EINTR) {
    }
    printf("accept: %s\n", strerror(errno));
    return -1;
  }
  // int flag = 0;
  // if ((flag = fcntl(clientfd, F_SETFL, O_NONBLOCK)) < 0) {
  //  printf("%s: fcntl nonblocking failed, %d\n", __func__, MAX_EPOLL_EVENTS);
  //  return -1;
  // }
  struct ntyevent *event = ntyreactor_idx(reactor, clientfd);
  nty_event_set(event, clientfd, recv_cb, reactor);
  nty_event_add(reactor->epfd, EPOLLIN, event);
  printf("new connect [%s:%d], pos[%d]\n", 
    inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port), clientfd);
  return 0;
}
int init_sock(short port) {
  int fd = socket(AF_INET, SOCK_STREAM, 0);
  fcntl(fd, F_SETFL, O_NONBLOCK);
  struct sockaddr_in server_addr;
  memset(&server_addr, 0, sizeof(server_addr));
  server_addr.sin_family = AF_INET;
  server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
  server_addr.sin_port = htons(port);
  bind(fd, (struct sockaddr*)&server_addr, sizeof(server_addr));
  if (listen(fd, 20) < 0) {
    printf("listen failed : %s\n", strerror(errno));
  }
  return fd;
}
int ntyreactor_alloc(struct ntyreactor *reactor) {
  if (reactor == NULL) return -1;
  if (reactor->evblk == NULL) return -1;
  struct eventblock *blk = reactor->evblk;
  while (blk->next != NULL) {
    blk = blk->next;
  }
  struct ntyevent *evs = (struct ntyevent*)malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
  if (evs == NULL) {
    printf("ntyreactor_alloc ntyevents failed\n");
    return -2;
  }
  memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
  struct eventblock *block = (struct eventblock *)malloc(sizeof(struct eventblock));
  if (block == NULL) {
    printf("ntyreactor_alloc eventblock failed\n");
    return -2;
  }
  memset(block, 0, sizeof(struct eventblock));
  block->events = evs;
  block->next = NULL;
  blk->next = block;
  reactor->blkcnt ++; //
  return 0;
}
struct ntyevent *ntyreactor_idx(struct ntyreactor *reactor, int sockfd) {
  int blkidx = sockfd / MAX_EPOLL_EVENTS;
  while (blkidx >= reactor->blkcnt) {
    ntyreactor_alloc(reactor);
  }
  struct eventblock *blk = reactor->evblk;
  int i = 0;
  while(i ++ < blkidx && blk != NULL) {
    blk = blk->next;
  }
  return &blk->events[sockfd % MAX_EPOLL_EVENTS];
}
int ntyreactor_init(struct ntyreactor *reactor) {
  if (reactor == NULL) return -1;
  memset(reactor, 0, sizeof(struct ntyreactor));
  // 1. 创建epoll fd
  reactor->epfd = epoll_create(1);
  if (reactor->epfd <= 0) {
    printf("create epfd in %s err %s\n", __func__, strerror(errno));
    return -2;
  }
  // 2.创建一个event对象
  struct ntyevent *evs = (struct ntyevent*)malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
  if (evs == NULL) {
    printf("ntyreactor_alloc ntyevents failed\n");
    return -2;
  }
  memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent));
  // 3.初始化链表第一个block
  struct eventblock *block = (struct eventblock *)malloc(sizeof(struct eventblock));
  if (block == NULL) {
    printf("ntyreactor_alloc eventblock failed\n");
    return -2;
  }
  memset(block, 0, sizeof(struct eventblock));
  block->events = evs;
  block->next = NULL;
  reactor->evblk = block;
  reactor->blkcnt = 1;
  return 0;
}
int ntyreactor_destory(struct ntyreactor *reactor) {
  close(reactor->epfd);
  //free(reactor->events);
  struct eventblock *blk = reactor->evblk;
  struct eventblock *blk_next = NULL;
  while (blk != NULL) {
    blk_next = blk->next;
    free(blk->events);
    free(blk);
    blk = blk_next;
  }
  return 0;
}
// 将多个服务器socket,加入到epoll集合,
int ntyreactor_addlistener(struct ntyreactor *reactor, int sockfd, NCALLBACK *acceptor) {
  if (reactor == NULL) return -1;
  if (reactor->evblk == NULL) return -1;
  //reactor->evblk->events[sockfd];
  struct ntyevent *event = ntyreactor_idx(reactor, sockfd);
  nty_event_set(event, sockfd, acceptor, reactor);
  nty_event_add(reactor->epfd, EPOLLIN, event);
  return 0;
}
int ntyreactor_run(struct ntyreactor *reactor) {
  if (reactor == NULL) return -1;
  if (reactor->epfd < 0) return -1;
  if (reactor->evblk == NULL) return -1;
  struct epoll_event events[MAX_EPOLL_EVENTS+1];
  int checkpos = 0, i;
  while (1) {
    int nready = epoll_wait(reactor->epfd, events, MAX_EPOLL_EVENTS, -1);
    if (nready < 0) {
      printf("epoll_wait error, exit\n");
      continue;
    }
    for (i = 0;i < nready;i ++) {
      struct ntyevent *ev = (struct ntyevent*)events[i].data.ptr;
      printf("current ready fd = %d\n", ev->fd);
      //   回调函数在这里被调用
      if ((events[i].events & EPOLLIN) && (ev->events & EPOLLIN)) {
        ev->callback(ev->fd, events[i].events, ev->arg);
      }
      if ((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT)) {
        ev->callback(ev->fd, events[i].events, ev->arg);
      } 
    }
  }
}
// 3, 6w, 1, 100 == 
// <remoteip, remoteport, localip, localport>
int main(int argc, char *argv[]) {
  unsigned short port = SERVER_PORT; // listen 8888
  if (argc == 2) {
    port = atoi(argv[1]);
  }
  struct ntyreactor *reactor = (struct ntyreactor*)malloc(sizeof(struct ntyreactor));
  ntyreactor_init(reactor);
  int i = 0;
  int sockfds[PORT_COUNT] = {0};
  for (i = 0;i < PORT_COUNT;i ++) {
    sockfds[i] = init_sock(port+i);
    printf("listen fd = %d\n", sockfds[i]);
    ntyreactor_addlistener(reactor, sockfds[i], accept_cb);
  }
  ntyreactor_run(reactor);
  ntyreactor_destory(reactor);
  for (i = 0;i < PORT_COUNT;i ++) {
    close(sockfds[i]);
  }
  free(reactor);
  return 0;
}

文章参考于<零声教育>的C/C++linux服务期高级架构

相关文章
|
11月前
|
缓存 编解码 网络协议
一文带你由浅入深Netty异步非阻塞世界
一文带你由浅入深Netty异步非阻塞世界
一文带你由浅入深Netty异步非阻塞世界
|
Java 调度 Spring
Java异步非阻塞编程的几种方式
Java异步非阻塞编程的几种方式
Java异步非阻塞编程的几种方式
|
24天前
|
Java API Spring
Java实现异步编程的几种方式
通过本文的介绍,我们了解了在Java中实现异步编程的几种常用方式。每种方法都有其优点和适用场景,具体选择哪种方式应根据实际需求和场景决定。如果任务较简单,可以使用 `Thread`或 `ExecutorService`;如果需要处理复杂的异步流程,可以考虑使用 `CompletableFuture`或Reactive编程框架。希望本文对您理解和实现Java异步编程有所帮助。
13 1
|
1月前
|
NoSQL Java Redis
Reactor实战,创建一个简单的单线程Reactor(理解了就相当于理解了多线程的Reactor)
本文通过一个简单的单线程Reactor模式的Java代码示例,展示了如何使用NIO创建一个服务端,处理客户端的连接和数据读写,帮助理解Reactor模式的核心原理。
32 0
Reactor实战,创建一个简单的单线程Reactor(理解了就相当于理解了多线程的Reactor)
|
6月前
|
监控 安全 Linux
reactor的原理与实现
前情回顾 网络IO,会涉及到两个系统对象:   一个是用户空间调用的进程或线程   一个是内核空间的内核系统 如果发生IO操作read时,会奖励两个阶段:
71 1
|
6月前
|
Linux API C++
epoll封装reactor原理剖析与代码实现(1)
epoll封装reactor原理剖析与代码实现(1)
207 0
|
6月前
|
监控 Java 应用服务中间件
epoll封装reactor原理剖析与代码实现(2)
epoll封装reactor原理剖析与代码实现(2)
93 0
|
缓存 Java
java线程池和示例代码
java线程池和示例代码
89 1
|
JavaScript 前端开发 Java
响应式编程简介之:Reactor
响应式编程简介之:Reactor
响应式编程简介之:Reactor