Mysql系列-3.Mysql的SQL优化和锁(下)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: Mysql系列-3.Mysql的SQL优化和锁

Mysql系列-3.Mysql的SQL优化和锁(中):https://developer.aliyun.com/article/1414564


意向锁


1). 介绍


为了避免DML在执行时,加的行锁与表锁的冲突,在InnoDB中引入了意向锁,使得表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。


假如没有意向锁,客户端一对表加了行锁后,客户端二如何给表加表锁呢,来通过示意图简单分析一下:

首先客户端一,开启一个事务,然后执行DML操作,在执行DML语句时,会对涉及到的行加行锁。

当客户端二,想对这张表加表锁时,会检查当前表是否有对应的行锁,如果没有,则添加表锁,此时就会从第一行数据,检查到最后一行数据,效率较低。

有了意向锁之后 :


客户端一,在执行DML操作时,会对涉及的行加行锁,同时也会对该表加上意向锁。

而其他客户端,在对这张表加表锁的时候,会根据该表上所加的意向锁来判定是否可以成功加表锁,而不用逐行判断行锁情况了。

2). 分类


  • 意向共享锁(IS): 由语句select … lock in share mode添加 。 与 表锁共享锁(read)兼容,与表锁排他锁(write)互斥。
  • 意向排他锁(IX): 由insert、update、delete、select…for update添加 。与表锁共享锁(read)及排他锁(write)都互斥,意向锁之间不会互斥。


一旦事务提交了,意向共享锁、意向排他锁,都会自动释放。


可以通过以下SQL,查看意向锁及行锁的加锁情况:

select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from
performance_schema.data_locks;

演示:


A. 意向共享锁与表读锁是兼容的

B. 意向排他锁与表读锁、写锁都是互斥的


行级锁


介绍


行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在InnoDB存储引擎中。


InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁。对于行级锁,主要分为以下三类:


  • 行锁(Record Lock):锁定单个行记录的锁,防止其他事务对此行进行update和delete。在RC、RR隔离级别下都支持。

  • 间隙锁(Gap Lock):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事务在这个间隙进行insert,产生幻读。在RR隔离级别下都支持。

  • 临键锁(Next-Key Lock):行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap。在RR隔离级别下支持。


行锁


1). 介绍


InnoDB实现了以下两种类型的行锁:


  • 共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排它锁。
  • 排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他锁。


两种行锁的兼容情况如下

常见的SQL语句,在执行时,所加的行锁如下:

SQL 行锁类型 说明
INSERT … 排他锁 自动加锁
UPDATE … 排他锁 自动加锁
DELETE … 排他锁 自动加锁
SELECT(正常) 不加任何锁
SELECT … LOCK IN SHARE MODE 共享锁 需要手动在SELECT之后加LOCK IN SHARE MODE
SELECT … FOR UPDATE 排他锁 需要手动在SELECT之后加FOR UPDATE

2). 演示


默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜索和索引扫描,以防止幻读。


  • 针对唯一索引进行检索时,对已存在的记录进行等值匹配时,将会自动优化为行锁。
  • InnoDB的行锁是针对于索引加的锁,不通过索引条件检索数据,那么InnoDB将对表中的所有记录加锁,此时 就会升级为表锁。


可以通过以下SQL,查看意向锁及行锁的加锁情况:

select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from
performance_schema.data_locks;

示例演示


数据准备:

CREATE TABLE `stu` (
    `id` int NOT NULL PRIMARY KEY AUTO_INCREMENT,
    `name` varchar(255) DEFAULT NULL,
    `age` int NOT NULL
) ENGINE = InnoDB CHARACTER SET = utf8mb4;
INSERT INTO `stu` VALUES (1, 'tom', 1);
INSERT INTO `stu` VALUES (3, 'cat', 3);
INSERT INTO `stu` VALUES (8, 'rose', 8);
INSERT INTO `stu` VALUES (11, 'jetty', 11);
INSERT INTO `stu` VALUES (19, 'lily', 19);
INSERT INTO `stu` VALUES (25, 'luci', 25);

演示行锁的时候,我们就通过上面这张表来演示一下。


A. 普通的select语句,执行时,不会加锁。

B. select…lock in share mode,加共享锁,共享锁与共享锁之间兼容。

共享锁与排他锁之间互斥。

客户端一获取的是id为1这行的共享锁,客户端二是可以获取id为3这行的排它锁的,因为不是同一行数据。 而如果客户端二想获取id为1这行的排他锁,会处于阻塞状态,以为共享锁与排他锁之间互斥。


C. 排它锁与排他锁之间互斥

当客户端一,执行update语句,会为id为1的记录加排他锁; 客户端二,如果也执行update语句更新id为1的数据,也要为id为1的数据加排他锁,但是客户端二会处于阻塞状态,因为排他锁之间是互斥的。 直到客户端一,把事务提交了,才会把这一行的行锁释放,此时客户端二,解除阻塞。


D. 无索引行锁升级为表锁


stu表中数据如下:

我们在两个客户端中执行如下操作:

在客户端一中,开启事务,并执行update语句,更新name为Lily的数据,也就是id为19的记录 。然后在客户端二中更新id为3的记录,却不能直接执行,会处于阻塞状态,为什么呢?


原因就是因为此时,客户端一,根据name字段进行更新时,name字段是没有索引的,如果没有索引,此时行锁会升级为表锁(因为行锁是对索引项加的锁,而name没有索引)。


接下来,我们再针对name字段建立索引,索引建立之后,再次做一个测试:

此时我们可以看到,客户端一,开启事务,然后依然是根据name进行更新。而客户端二,在更新id为3的数据时,更新成功,并未进入阻塞状态。 这样就说明,我们根据索引字段进行更新操作,就可以避免行锁升级为表锁的情况。


间隙锁&临键锁


默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜索和索引扫描,以防止幻读。


  • 索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。
  • 索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。
  • 索引上的范围查询(唯一索引)–会访问到不满足条件的第一个值为止。


注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会阻止另一个事务在同一间隙上采用间隙锁。


示例演示


A. 索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁

B. 索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key

lock 退化为间隙锁。


介绍分析一下:


我们知道InnoDB的B+树索引,叶子节点是有序的双向链表。 假如,我们要根据这个二级索引查询值为18的数据,并加上共享锁,我们是只锁定18这一行就可以了吗? 并不是,因为是非唯一索引,这个结构中可能有多个18的存在,所以,在加锁时会继续往后找,找到一个不满足条件的值(当前案例中也就是29)。此时会对18加临键锁,并对29之前的间隙加锁。

C. 索引上的范围查询(唯一索引)–会访问到不满足条件的第一个值为止。

查询的条件为id>=19,并添加共享锁。 此时我们可以根据数据库表中现有的数据,将数据分为三个部分:


[19]

(19,25]

(25,+∞]


所以数据库数据在加锁是,就是将19加了行锁,25的临键锁(包含25及25之前的间隙),正无穷的临键锁(正无穷及之前的间隙)。

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
15小时前
|
关系型数据库 MySQL 数据库
MySQL的行级锁锁的到底是什么?
本文简述了InnoDB的行级锁机制,包括记录锁、间隙锁和Next-Key锁。记录锁锁定索引记录,防止其他事务对相同值的行进行操作;间隙锁锁定索引记录间的间隙,防止插入。Next-Key锁是两者的结合,锁定记录及其前后间隙。在可重复读(RR)隔离级别下,加锁策略涉及Next-Key锁,但会因查询条件退化为行锁或间隙锁。MySQL的加锁机制遵循两个原则和两个优化,例如唯一索引等值查询时退化为行锁。RR级别虽能防止幻读,但也可能降低并发并引发死锁,因此有些场景下会选择读已提交(RC)级别。
MySQL的行级锁锁的到底是什么?
|
15小时前
|
存储 算法 关系型数据库
MySQL连接的原理⭐️4种优化连接的手段性能提升240%🚀
MySQL连接的原理⭐️4种优化连接的手段性能提升240%🚀
|
15小时前
|
SQL canal 运维
MySQL高可用架构探秘:主从复制剖析、切换策略、延迟优化与架构选型
MySQL高可用架构探秘:主从复制剖析、切换策略、延迟优化与架构选型
|
15小时前
|
存储 SQL 关系型数据库
掌握高性能SQL的34个秘诀🚀多维度优化与全方位指南
掌握高性能SQL的34个秘诀🚀多维度优化与全方位指南
|
15小时前
|
存储 算法 关系型数据库
MySQL怎样处理排序⭐️如何优化需要排序的查询?
MySQL怎样处理排序⭐️如何优化需要排序的查询?
|
15小时前
|
SQL 存储 关系型数据库
5分钟搞懂MySQL半连接优化⭐️多种半连接的优化策略
5分钟搞懂MySQL半连接优化⭐️多种半连接的优化策略
|
15小时前
|
SQL 存储 关系型数据库
MySQL的3种索引合并优化⭐️or到底能不能用索引?
MySQL的3种索引合并优化⭐️or到底能不能用索引?
|
15小时前
|
存储 算法 关系型数据库
MySQL事务与锁,看这一篇就够了!
MySQL事务与锁,看这一篇就够了!
|
15小时前
|
存储 关系型数据库 MySQL
MySQL的优化利器⭐️Multi Range Read与Covering Index是如何优化回表的?
本文以小白的视角使用通俗易懂的流程图深入浅出分析Multi Range Read与Covering Index是如何优化回表
|
15小时前
|
存储 SQL 关系型数据库
MySQL的优化利器⭐️索引条件下推,千万数据下性能提升273%🚀
以小白的视角探究MySQL索引条件下推ICP的优化,其中包括server层与存储引擎层如何交互、索引、回表、ICP等内容
MySQL的优化利器⭐️索引条件下推,千万数据下性能提升273%🚀