数据结构之优先级队列(堆)及top-k问题讲解(二)

简介: 数据结构之优先级队列(堆)及top-k问题讲解(二)

数据结构之优先级队列(堆)及top-k问题讲解(一)+https://developer.aliyun.com/article/1413566

2. PriorityQueue常用接口介绍

1.构造方法

1.1不含参的构造方法
// 不含参的构造方法
    public PriorityQueue() {
        this(DEFAULT_INITIAL_CAPACITY, null);
    }
    // 默认容量是11
    private static final int DEFAULT_INITIAL_CAPACITY = 11;
1.2 指定容量的构造方法
// 指定容量的构造方法
    public PriorityQueue(int initialCapacity) {
        this(initialCapacity, null);
    }
1.3指定容量  并接受比较器的构造方法(最核心的一个构造方法)
// 指定容量  并接受比较器的构造方法
    public PriorityQueue(int initialCapacity,
                         Comparator<? super E> comparator) {
        // Note: This restriction of at least one is not actually needed,
        // but continues for 1.5 compatibility
        // 如果初始容量<1  就抛出异常  但实际上源码中也说了  <1这个条件并不是必需的  只不过是为了和1.5保持一致设置的条件
        if (initialCapacity < 1)
            throw new IllegalArgumentException();
        this.queue = new Object[initialCapacity];
        this.comparator = comparator;
    }
1.4利用其他集合创建一个优先级队列

只要实现了Collection的集合都能作为参数参与创建一个优先级队列

PriorityQueue(Collection<? extends E> c)  用一个集合来创建优先级队列

List<Integer> list = new ArrayList<>();
        list.add(1);
        list.add(12);
        list.add(13);
        PriorityQueue<Integer> priorityQueue =
                new PriorityQueue<>(list);
        System.out.println(priorityQueue.toString());// 输出1 12 13

2.PriorityQueue的扩容机制

PriorityQueue的存储结构是顺序表,在不断添加数据的时候涉及到扩容问题,下面来研究一下PriorityQueue中是如何进行扩容的

先来看offer对应的源码

public boolean offer(E e) {
        // 为空 直接抛出异常  不能插入空指针
        if (e == null)
            throw new NullPointerException();
        modCount++;
        int i = size;
        // 进行扩容
        if (i >= queue.length)
            // grow方法内部是扩容的机制
            grow(i + 1);
        size = i + 1;
        if (i == 0)
            queue[0] = e;
        else  // 向上调整
            siftUp(i, e);
        return true;
    }

接下来看grow方法的实现


3.如何实现大根堆

PriorityQueue默认是小根堆,想要实现大根堆则需要重新构建比较逻辑,使用Comparator接口,下面以整数的比较为例实现大根堆

1.方法一:直接构造一个比较器
// 构造比较器 实现大根堆
        class IntCmp implements Comparator<Integer> {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2.compareTo(o1);
            }
        }
        PriorityQueue<Integer> priorityQueue =
                new PriorityQueue<>(new IntCmp());
        priorityQueue.offer(1);
        priorityQueue.offer(2);
        priorityQueue.offer(33);
        priorityQueue.offer(44);
        priorityQueue.offer(55);
        System.out.println(priorityQueue.poll());// 输出55
2.方法二:使用匿名内部类
// 使用匿名内部类
        PriorityQueue<Integer> priorityQueue =
                new PriorityQueue<>(new Comparator<Integer>() {
                    @Override
                    public int compare(Integer o1, Integer o2) {
                        return o2.compareTo(o1);
                    }
                });
        priorityQueue.offer(1);
        priorityQueue.offer(2);
        priorityQueue.offer(33);
        priorityQueue.offer(44);
        priorityQueue.offer(55);
        System.out.println(priorityQueue.poll());// 输出55
3.方法三:使用lambda表达式(推荐)
// 使用lambda表达式
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(
                (o1,o2) ->{return o2.compareTo(o1);}
        );
        priorityQueue.offer(1);
        priorityQueue.offer(2);
        priorityQueue.offer(33);
        priorityQueue.offer(44);
        priorityQueue.offer(55);
        System.out.println(priorityQueue.poll());// 输出55

四.重点:top-k问题的三种解决方法

https://leetcode.cn/problems/smallest-k-lcci/description/

1.最简单的思路:对数组进行排序

// 解法1
    public int[] smallestK1(int[] arr, int k) {
        int[] ret = new int[k];
        if(arr == null || k <= 0) return ret;
        Arrays.sort(arr);
        // 排序之后  arr从小到大排列完毕
        for (int i = 0; i < k; i++) {
            ret[i] = arr[i];
        }
        return ret;
    }

2.直接使用堆(优先级队列)的特性  创建小根堆  poll k次即可

// 解法2
    public int[] smallestK2(int[] arr, int k) {
        int[] ret = new int[k];
        if(arr == null || k <= 0) return ret;
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>();
        for (int i = 0; i < arr.length; i++) {
            priorityQueue.offer(arr[i]);
        }
        for (int i = 0; i < k; i++) {
            ret[i] = priorityQueue.poll();
        }
        return ret;
    }

3.建立一个k个结点的大根堆  再与数组剩余元素进行比较(重点掌握)

步骤:

  1. 先将前k个元素创建为大根堆(k 是因为我最后要返回k个元素)
  2. 将数组中剩余的元素依次去和堆顶元素进行比较,如果小于堆顶元素,插入堆中
  3. 返回容量为k的大根堆

// 解法3  效率最高的一种方法  创建一个具有k个结点的大根堆
    // 注意  优先级队列默认是小根堆  要实现大根堆  需要先创建一个实现了Comparator接口的对象
    class IntCmp implements Comparator<Integer> {
        @Override
        public int compare(Integer o1, Integer o2) {
            return o2.compareTo(o1);
        }
    }
    public int[] smallestK(int[] arr, int k) {
        int[] ret = new int[k];
        if(arr == null || k <= 0) return ret;
        // 创建一个具有k个结点的大根堆
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(new IntCmp());
        for (int i = 0; i < k; i++) {
            // 将前k个元素做成大根堆
            priorityQueue.offer(arr[i]);
        }
        for (int i = k; i < arr.length; i++) {
            // 去和栈顶元素比较
            if (arr[i] < priorityQueue.peek()) {
                // 证明栈顶元素不是前k个最小的元素  要删除
                priorityQueue.poll();
                priorityQueue.offer(arr[i]);
            }
        }
        for (int i = 0; i < k; i++) {
            ret[i] = priorityQueue.poll();
        }
        return ret;
    }

时间复杂度分析:

前两种方法对于数据量特别大的情况十分不友好!占用的内存太大

变式:

求数组中第k大/小元素

// 求数组中第k大/小元素
    //  前k个元素存储到小根堆中  堆里存放最大的k个元素 以小根堆的形式存储  则堆头一定是第k大的元素
    public int maxKestK(int[] arr, int k) {
        if(arr == null || k <= 0) {
            throw new ArrayEmptyException("不含有元素或k不合法");
        }
        // 创建一个具有k个结点的大根堆
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>();
        for (int i = 0; i < k; i++) {
            // 将前k个元素做成小根堆
            priorityQueue.offer(arr[i]);
        }
        for (int i = k; i < arr.length; i++) {
            if (arr[i] > priorityQueue.peek()) {
                priorityQueue.poll();
                priorityQueue.offer(arr[i]);
            }
        }
        return priorityQueue.poll();
    }

五.堆排

 堆排序即利用堆的思想进行排序,堆排序的过程可以分为两步

  1. 确定排序方式:升序--建立大根堆  降序--建立小根堆
  2. 利用堆删除的思想(向下调整进行堆排)

图解:

代码实现

// 堆排序
    // 升序  从小到大  创建大根堆
    // 降序  从大到小  创建小根堆
    /**
     * 升序  调整为大根堆  堆首元素一定是最大的
     * 交换堆首和堆尾元素  向下调整(不包含被调下去的最大元素)  使第二大的元素位于堆顶
     * 重复上述操作  每次都是堆首元素和堆尾元素进行交换
     */
    public void headSort() {
        int end = usedSize-1;
        while(end > 0) {
            swap(0,end);
            shiftDown(0,end);
            end--;
        }
    }
    private void shiftDown(int parent, int usedSize) {
        int child = 2 * parent+1;// 得到左孩子的下标
        while (child < usedSize) {
            // 首先要保证child是左右孩子最大元素的下标
            if(child + 1 < usedSize && elem[child] < elem[child+1]) {
                // 有右孩子  且右孩子的值比左孩子大
                child++;
            }
            // 此时child就是值最大孩子的下标
            if(elem[child] > elem[parent]) {
                swap(child,parent);
                parent = child;
                child = 2 * parent+1;
            }else {
                break;
            }
        }
    }

总结:

堆排时要选择好排序的顺序,如果是升序排序就创建大根堆,如果是降序排序就是用小根堆

以升序排序为例,创建一个大根堆存储数据,再不断交换堆顶和堆尾元素(此时一定是最大元素放到堆尾,最小元素放到堆顶),再进行向下调整,向下调整的数据范围并不报错刚刚被挪动到堆尾的元素,使整个堆仍然保持大根堆的性质,这样最大的元素就被移动到最后,依次操作,每次都可以把当前数据范围内的最大元素移动到最后,最后创建出的堆中存储的数据就是升序排序的

这种"逆向思维"在堆中很常见,想让堆顶是最小的元素,就先创建大根堆,再不断地挪动数据,向下调整


目录
相关文章
|
6月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
168 1
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
9月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
344 77
|
8月前
|
算法 调度 C++
STL——栈和队列和优先队列
通过以上对栈、队列和优先队列的详细解释和示例,希望能帮助读者更好地理解和应用这些重要的数据结构。
172 11
|
8月前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
9月前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
248 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
9月前
|
存储 C语言 C++
【C++数据结构——栈与队列】链栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现链栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储整数,最大
143 9
|
9月前
|
C++
【C++数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】
【数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】(1)遇到左括号:进栈Push()(2)遇到右括号:若栈顶元素为左括号,则出栈Pop();否则返回false。(3)当遍历表达式结束,且栈为空时,则返回true,否则返回false。本关任务:编写一个程序利用栈判断左、右圆括号是否配对。为了完成本关任务,你需要掌握:栈对括号的处理。(1)遇到左括号:进栈Push()开始你的任务吧,祝你成功!测试输入:(()))
197 7
|
11月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
292 5
|
11月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
402 16