Python大数据之PySpark(八)SparkCore加强

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: Python大数据之PySpark(八)SparkCore加强

SparkCore加强

  • 重点:RDD的持久化和Checkpoint
  • 提高拓展知识:Spark内核调度全流程,Spark的Shuffle
  • 练习:热力图统计及电商基础指标统计
  • combineByKey作为面试部分重点,可以作为扩展知识点

Spark算子补充

# -*- coding: utf-8 -*-
# Program function:演示join操作
from pyspark import SparkConf, SparkContext
if __name__ == '__main__':
    print('PySpark join Function Program')
    # TODO:1、创建应用程序入口SparkContext实例对象
    conf = SparkConf().setAppName("miniProject").setMaster("local[*]")
    sc = SparkContext.getOrCreate(conf)
    # TODO: 2、从本地文件系统创建RDD数据集
    x = sc.parallelize([(1001, "zhangsan"), (1002, "lisi"), (1003, "wangwu"), (1004, "zhangliu")])
    y = sc.parallelize([(1001, "sales"), (1002, "tech")])
    # TODO:3、使用join完成联合操作
    print(x.join(y).collect())  # [(1001, ('zhangsan', 'sales')), (1002, ('lisi', 'tech'))]
    print(x.leftOuterJoin(y).collect())
    print(x.rightOuterJoin(y).collect())  # [(1001, ('zhangsan', 'sales')), (1002, ('lisi', 'tech'))]
    sc.stop()

[掌握]RDD 持久化

为什么使用缓存

  • 缓存可以加速计算,比如在wordcount操作的时候对reduceByKey算子进行cache的缓存操作,这时候后续的操作直接基于缓存后续的计算
  • 缓存可以解决容错问题,因为RDD是基于依赖链的Dependency
  • 使用经验:一次缓存可以多次使用

如何进行缓存?

  • spark中提供cache方法
  • spark中提供persist方法
# -*- coding: utf-8 -*-
# Program function:演示join操作
from pyspark import SparkConf, SparkContext
from pyspark.storagelevel import StorageLevel
import time
if __name__ == '__main__':
    print('PySpark join Function Program')
    # TODO:1、创建应用程序入口SparkContext实例对象
    conf = SparkConf().setAppName("miniProject").setMaster("local[*]")
    sc = SparkContext.getOrCreate(conf)
    # TODO: 2、从本地文件系统创建RDD数据集
    x = sc.parallelize([(1001, "zhangsan"), (1002, "lisi"), (1003, "wangwu"), (1004, "zhangliu")])
    y = sc.parallelize([(1001, "sales"), (1002, "tech")])
    # TODO:3、使用join完成联合操作
    join_result_rdd = x.join(y)
    print(join_result_rdd.collect())  # [(1001, ('zhangsan', 'sales')), (1002, ('lisi', 'tech'))]
    print(x.leftOuterJoin(y).collect())
    print(x.rightOuterJoin(y).collect())  # [(1001, ('zhangsan', 'sales')), (1002, ('lisi', 'tech'))]
    # 缓存--基于内存缓存-cache底层调用的是self.persist(StorageLevel.MEMORY_ONLY)
    join_result_rdd.cache()
    # join_result_rdd.persist(StorageLevel.MEMORY_AND_DISK_2)
    # 如果执行了缓存的操作,需要使用action算子触发,在4040页面上看到绿颜色标识
    join_result_rdd.collect()
    # 如果后续执行任何的操作会直接基于上述缓存的数据执行,比如count
    print(join_result_rdd.count())
    time.sleep(600)
    sc.stop()


缓存级别

  • 如何选:
  • 1-首选内存
  • 2-内存放不下,尝试序列化
  • 3-如果算子比较昂贵可以缓存在磁盘中,否则不要直接放入磁盘
  • 4-使用副本机制完成容错性质

释放缓存

  • 后续讲到Spark内存模型中,缓存放在Execution内存模块
  • 如果不在需要缓存的数据,可以释放

  • 最近最少使用(LRU)
print(“释放缓存之后,直接从rdd的依赖链重新读取”)
print(join_result_rdd.count())


* <

何时缓存数据

  • rdd来之不易
  • 经过很长依赖链计算
  • 经过shuffle
  • rdd被使用多次
  • 缓存cache或persist
  • 问题:缓存将数据保存在内存或磁盘中,内存或磁盘都属于易失介质
  • 内存在重启之后没有数据了,磁盘也会数据丢失
  • 注意:缓存会将依赖链进行保存的
  • 如何解决基于cache或persist的存储在易失介质的问题?
  • 引入checkpoint检查点机制
  • 将元数据和数据统统存储在HDFS的非易失介质,HDFS有副本机制
  • checkpoint切断依赖链,直接基于保存在hdfs的中元数据和数据进行后续计算
  • 什么是元数据?
  • 管理数据的数据
  • 比如,数据大小,位置等都是元数据

[掌握]RDD Checkpoint

  • 为什么有检查点机制?
  • 因为cache或perisist将数据缓存在内存或磁盘中,会有丢失数据情况,引入检查点机制,可以将数据斩断依赖之后存储到HDFS的非易失介质中,解决Spark的容错问题
  • Spark的容错问题?
  • 有一些rdd出错怎么办?可以借助于cache或Persist,或checkpoint
  • 如何使用检查点机制?
  • 指定数据保存在哪里?
  • sc.setCheckpointDir(“hdfs://node1:9820/chehckpoint/”)
  • 对谁缓存?答案算子
  • rdd1.checkpoint() 斩断依赖关系进行检查点
  • 检查点机制触发方式
  • action算子可以触发
  • 后续的计算过程
  • Spark机制直接从checkpoint中读取数据
  • 实验过程还原:
  • 检查点机制那些作用?
  • 将数据和元数据保存在HDFS中
  • 后续执行rdd的计算直接基于checkpoint的rdd
  • 起到了容错的作用
  • 面试题:如何实现Spark的容错?
  • 1-首先会查看Spark是否对数据缓存,cache或perisist,直接从缓存中提取数据
  • 2-否则查看checkpoint是否保存数据
  • 3-否则根据依赖关系重建RDD
  • 检查点机制案例

持久化和Checkpoint的区别

  • 存储位置:缓存放在内存或本地磁盘,检查点机制在hdfs
  • 生命周期:缓存通过LRU或unpersist释放,检查点机制会根据文件一直存在
  • 依赖关系:缓存保存依赖关系,检查点斩断依赖关系链

案例测试:

先cache在checkpoint测试

  • 1-读取数据文件
  • 2-设置检查点目录
  • 3-rdd.checkpoint() 和rdd.cache()
  • 4-执行action操作,根据spark容错选择首先从cache中读取数据,时间更少,速度更快
  • 5-如果对rdd实现unpersist
  • 6-从checkpoint中读取rdd的数据
  • 7-通过action可以查看时间


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
57 4
|
5天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
1月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
53 1
|
1月前
|
机器学习/深度学习 数据可视化 大数据
驾驭股市大数据:Python实战指南
【10月更文挑战第1天】随着信息技术的发展,投资者现在能够访问到前所未有的海量金融数据。本文将指导您如何利用Python来抓取当前股市行情的大数据,并通过分析这些数据为自己提供决策支持。我们将介绍从数据获取到处理、分析以及可视化整个流程的技术方法。
82 2
|
2月前
|
存储 大数据 索引
解锁Python隐藏技能:构建高效后缀树Suffix Tree,处理大数据游刃有余!
通过构建高效的后缀树,Python程序在处理大规模字符串数据时能够游刃有余,显著提升性能和效率。无论是学术研究还是工业应用,Suffix Tree都是不可或缺的强大工具。
46 6
|
1月前
|
大数据 关系型数据库 数据库
python 批量处理大数据写入数据库
python 批量处理大数据写入数据库
96 0
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
14天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
50 1
|
1天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
20 7
|
1天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
10 2