Python大数据之pandas快速入门(一)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: Python大数据之pandas快速入门(一)

pandas快速入门

学习目标

  • 能够知道 DataFrame 和 Series 数据结构
  • 能够加载 csv 和 tsv 数据集
  • 能够区分 DataFrame 的行列标签和行列位置编号
  • 能够获取 DataFrame 指定行列的数据

1. DataFrame 和 Series 简介

pandas是用于数据分析的开源Python库,可以实现数据加载,清洗,转换,统计处理,可视化等功能。

pandas最基本的两种数据结构:

1)DataFrame

  • 用来处理结构化数据(SQL数据表,Excel表格)
  • 可以简单理解为一张数据表(带有行标签和列标签)

2)Series

  • 用来处理单列数据,也可以以把DataFrame看作由Series对象组成的字典或集合
  • 可以简单理解为数据表的一行或一列

2. 加载数据集(csv和tsv)

2.1 csv和tsv文件格式简介

csv 和 tsv 文件都是存储一个二维表数据的文件类型。

注意:其中csv文件每一列的列元素之间以逗号进行分割,tsv文件每一行的列元素之间以\t进行分割。

2.2 加载数据集(tsv和csv)

1)首先打开jupyter notebook,进入自己准备编写代码目录下方,创建01-pandas快速入门.ipynb文件:

注意:提前将提供的 data 数据集目录放置到 01-pandas快速入门.ipynb 同级目录下,后续课程会加载 data 目录下的数据集。

2)导入 pandas 包

注意:pandas 并不是 Python 标准库,所以先导入pandas

# 在 ipynb 文件中导入 pandas
import pandas as pd

3)加载 csv 文件数据集

tips = pd.read_csv('./data/tips.csv')
tips

4)加载 tsv 文件数据集

# sep参数指定tsv文件的列元素分隔符为\t,默认sep参数是,
china = pd.read_csv('./data/china.tsv', sep='\t')
china


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
0
111
分享
相关文章
Pandas高级数据处理:大数据集处理
Pandas 是强大的 Python 数据分析库,但在处理大规模数据集时可能遇到性能瓶颈和内存不足问题。本文介绍常见问题及解决方案,如分块读取、选择性读取列、数据类型优化、避免不必要的副本创建等技巧,并通过代码示例详细解释。同时,针对 `MemoryError`、`SettingWithCopyWarning` 和 `DtypeWarning` 等常见报错提供解决方法,帮助读者更高效地处理大数据集。
123 16
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
156 35
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
204 7
MaxCompute MaxFrame评测 | 分布式Python计算服务MaxFrame(完整操作版)
在当今数字化迅猛发展的时代,数据信息的保存与分析对企业决策至关重要。MaxCompute MaxFrame是阿里云自研的分布式计算框架,支持Python编程接口、兼容Pandas接口并自动进行分布式计算。通过MaxCompute的海量计算资源,企业可以进行大规模数据处理、可视化数据分析及科学计算等任务。本文将详细介绍如何开通MaxCompute和DataWorks服务,并使用MaxFrame进行数据操作。包括创建项目、绑定数据源、编写PyODPS 3节点代码以及执行SQL查询等内容。最后,针对使用过程中遇到的问题提出反馈建议,帮助用户更好地理解和使用MaxFrame。
MaxFrame 性能评测:阿里云MaxCompute上的分布式Pandas引擎
MaxFrame是一款兼容Pandas API的分布式数据分析工具,基于MaxCompute平台,极大提升了大规模数据处理效率。其核心优势在于结合了Pandas的易用性和MaxCompute的分布式计算能力,无需学习新编程模型即可处理海量数据。性能测试显示,在涉及`groupby`和`merge`等复杂操作时,MaxFrame相比本地Pandas有显著性能提升,最高可达9倍。适用于大规模数据分析、数据清洗、预处理及机器学习特征工程等场景。尽管存在网络延迟和资源消耗等问题,MaxFrame仍是处理TB级甚至PB级数据的理想选择。
91 4
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
147 2
如何使用Python的Pandas库进行数据排序和排名
【4月更文挑战第22天】Pandas Python库提供数据排序和排名功能。使用`sort_values()`按列进行升序或降序排序,如`df.sort_values(by='A', ascending=False)`。`rank()`函数用于计算排名,如`df['A'].rank(ascending=False)`。多列操作可传入列名列表,如`df.sort_values(by=['A', 'B'], ascending=[True, False])`和分别对'A'、'B'列排名。
156 2
|
10月前
|
如何使用Python的Pandas库进行数据合并和拼接?
Pandas的`merge()`函数用于数据合并,如示例所示,根据'key'列对两个DataFrame执行内连接。`concat()`函数用于数据拼接,沿轴0(行)拼接两个DataFrame,并忽略原索引。
155 2

热门文章

最新文章