Transfomer编码器中自注意力机制、前馈网络层、叠加和归一组件等讲解(图文解释)

简介: Transfomer编码器中自注意力机制、前馈网络层、叠加和归一组件等讲解(图文解释)

Transformer中的编码器不止一个,而是由一组N个编码器串联而成,一个编码的输出作为下一个编码器的输入,如下图所示,每一个编码器都从下方接收数据,再输出给上方,以此类推,原句中的特征会由最后一个编码器输出,编码器模块的主要功能就是提取原句中的特征

我们又可以将编码器中的结构进行细分

由上图可知,每一个编码器的构造都是相同的,并且包含两个部分

1:多头注意力层

2:前馈网络层

下面我们对其进行讲解

一、自注意力机制

让我们通过一个例子来快速理解自注意力机制

a dog ate the food because it was hungry

想必大家都能看懂这句英文的意思,句中的it可以指代dog也可以指代food,我们自然是很好理解,但是对于计算机而言该如何决定呢?自注意力机制有助于解决这个问题

以上句为例,我们的模型首先需要计算出单词A的特征值,其次计算dog的特征值,以此类推,当计算每个词的特征值时,模型都需要遍历每个词与句子中其他词的关系,模型可以通过词与词之间的关系来更好的理解当前词的意思

比如当计算it的特征值时,模型会将it与句子中的其他词一一关联,以便更好的理解它的意思

如下图所示,it的特征值由它本身与句子中其他词的关系计算所得,通过关系连线,模型可以明确知道原句中it所指代的是dog而不是food,这是因为it与dog的关系更紧密,关系连线相较于其他词也更粗

自注意力机制首先将每个词转化为其对应的词嵌入向量,这样原句就可以由一个矩阵来表示

矩阵X的维度为【句子长度×词嵌入向量维度】通过矩阵X,我们可以再创建三个新的矩阵,分别是

查询矩阵Q

健矩阵K

值矩阵V

为了创建他我们需要先创建另外三个权重矩阵,用X分别乘它们得到上述三个矩阵

值得注意的是,权重矩阵的初始值完全是随机的,但最优值则需要通过训练获得,我们取得的权值越优,则上述三个矩阵也越精确

因为每个向量的维度均为64,所以对应矩阵的维度为【句子长度×64】

自注意力机制会使该词与给定句子中的所有词联系起来,包括四个步骤,下面一一介绍

1:计算查询矩阵与键矩阵的点积,其目的是为了了解单词1与句子中的所有单词的相似度

2:第二步将查询矩阵与键矩阵除以键向量维度的平方根,这样做的目的是为了获得稳定的梯度

3:目前所得的相似度分数尚未被归一化,我们需要使用softmax函数对其进行归一化处理,使数值分布到(0,1)之间

4:至此我们计算了查询矩阵与键矩阵的点积,得到了分数,然后softmax将分数归一化,自注意力机制的最后一步使计算注意力矩阵Z

注意力矩阵就是值向量与分数加权之后求和所得到的结果

下面是自注意力机制的流程图

自注意力机制也被称为缩放点积注意力机制,这是因为其计算过程是先求查询矩阵与键矩阵的点积,再除以键向量维度的平方根对结果进行缩放

二、多头注意力层

多头注意力是指我们可以使用多个注意力头,而不是只用一个,也就是说我们可以利用计算注意力矩阵Z的方法,来求得多个注意力矩阵

如果某个词实际上是由其他词的值向量控制,而这个词的含义又是模糊的,那么这种控制关系是有用的,否则这种控制关系会造成误解,为了确保结果准确,我们不能依赖单一的注意力矩阵,而应该计算多个注意力矩阵,并将其结果串联起来,使用多头注意力的逻辑如下:

使用多个注意力矩阵,而非单一的注意力矩阵,可以提高注意力矩阵的准确性

三、通过位置编码来学习位置

Transformer网络并不遵循递归循环的模式,因此我们不是逐字的输入句子,而是将句子中的所有词并行的输入到神经网络中,并行输入有助于缩短训练时间,同时有利于学习长期依赖,但是这样没有保留词序,因此这里引入了一种叫做位置编码的技术,位置编码是指词在句子中的位置的编码

位置编码矩阵P的维度与输入矩阵X的维度相同,在将输入矩阵传给Transformer之前,我们将其包含位置编码,只需要将P+X即可,然后再作为输入传给神经网络,这样依赖,输入矩阵不仅有词的嵌入值,还有词在句子中的位置信息

Transformer论文的作者使用正弦函数来计算位置编码

四、前馈网络层

前馈网络层由两个有ReLU激活函数的全连接层组成,前馈网络的参数在句子的不同位置上是相同的,但在不同的编码器模块上是不同的

五、叠加和归一组件

在编码器中还有一个重要的组成部分,即叠加和归一组件,它同时连接一个子层的输入和输出

叠加和归一组件实际上包含一个残差连接与层的归一化,层的归一化可以放置每层的值剧烈变化,从而提高了模型的训练速度

总结

编码器总结如下

1:将输入转换为输入矩阵,并将位置编码加入其中,再将结果作为输入传入底层的编码器

2:编码器1接收输入并将其送入多头注意力层,该子层运算后输入注意力矩阵

3:将注意力矩阵输入到下一个子层,即前馈网络层,前馈网络层将注意力矩阵作为输入,并计算出特征值作为输出

4:接下来,把从编码器1中得到输出作为输入,传入下一个编码器

5:编码器2进行同样的处理,再将给定输入的句子的特征值作为输出

这样可以将N个编码器一个接一个的叠加起来,从最后一个编码器得到输出将是给定输入句子的特征值,让我们把从最后一个编码器得到的特征值表示为R

我们把R作为输入传个解码器,解码器将基于这个输入生成目标句子

创作不易 觉得有帮助请点赞关注收藏~~~

目录
打赏
0
0
0
0
146
分享
相关文章
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
91 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
193 62
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
188 7
深入解析图神经网络注意力机制:数学原理与可视化实现
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限。它通过设置一系列规则,控制谁可以访问特定资源、在什么条件下访问以及可以执行哪些操作。ACL 可以应用于路由器、防火墙等设备,分为标准、扩展、基于时间和基于用户等多种类型,广泛用于企业网络和互联网中,以增强安全性和精细管理。
615 7
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
103 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
47 5
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
88 9
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
50 7
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
1524 0
基于surging的木舟IOT平台如何添加网络组件
【8月更文挑战第30天】在基于 Surging 的木舟 IOT 平台中添加网络组件需经历八个步骤:首先理解 Surging 及平台架构;其次明确组件需求,选择合适技术库;接着创建项目并配置;然后设计实现网络功能;再将组件集成至平台;接着进行详尽测试;最后根据反馈持续优化与维护。具体实施时应参照最新文档调整。
110 11

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等