【数据挖掘】K-Means、K-Means++、ISODATA算法详解及实战(图文解释 附源码)

简介: 【数据挖掘】K-Means、K-Means++、ISODATA算法详解及实战(图文解释 附源码)

聚类分析

无监督学习(Unsupervise Learning)着重于发现数据本身的分布特点。与监督学习(Supervised Learning)不同,无监督学习不需要对数据进行标记。从功能角度讲,无监督学习模型可以发现数据的“群落”,同时也可以寻找“离群”的样本。另外,对于特征维度非常高的数据样本,同样可以通过无监督学习进行数据降维,保留最具有区分性的低维度特征

聚类是一个将数据对象集划分为多个组或簇的过程,使得簇内的数据对象具有很高的相似性,但不同簇间的对象具有很高的相异性

聚类算法分类

随着聚类分析技术的蓬勃发展,目前已有很多类型的聚类算法。但很难对聚类方法进行简单的分类,因为这些类别的聚类可能重叠,从而使得一种方法具有一些交叉的特征。一般而言,聚类算法被划分为以下几类

1.划分方法

2.基于层次的方法

3.基于密度的方法

4.局域网格的方法

K-Means聚类

聚类分析中最广泛使用的算法为K-Means聚类算法

给定一个n个对象或元组的数据库,一个划分方法构建数据的k个划分,每个划分表示一个簇,k<=n,而且满足

(1)每个组至少包含一个对象;

(2)每个对象属于且仅属于一个组

划分时要求同一个聚类中的对象尽可能地接近或相关,不同聚类中的对象尽可能地远离或不同。K-Means算法是一个迭代的优化算法,最终使得下面均方误差最小。

算法流程图如下

用于划分的K-Means算法,其中每个簇的中心都用簇中所有对象的均值来表示。K-Means聚类模型所采用的迭代算法直观易懂且非常实用。但是具有容易收敛到局部最优解和需要预先设定簇的数量的缺陷

优点:

可扩展性较好,算法复杂度为O(nkt),其中n为对象总数,k是簇的个数,t是迭代次数

经常终止于局部最优解

缺点

只有当簇均值有定义的情况下,k均值方法才能使用。(某些分类属性的均值可能没有定义)

用户必须首先给定簇数目

不适合发现非凸形状的簇,

或者大小差别很大的簇 对噪声和离群点数据敏感

K-Means算法实现

下面对Iris数据集进行K-Means聚类

结果如下 显示每个预测对应的类别标签

代码如下

from sklearn.datasets import load_iris  
from sklearn.cluster import KMeans  
iris = load_iris()    #加载数据集
X = iris.data  
estimator = KMeans(n_clusters = 3)    #构造K-Means聚类模型
estimator.fit(X)  #数据导入模型进行训练
label_pred = estimator.labels_   #获取聚类标签
print(label_pred)
#显示各个样本所属的类别标签

k均值方法有些变种

他们的区别在于 不同的初始 k 个均值的选择

不同的相异度计算

不同的计算簇均值的策略

聚类分类数据的方法:k众数(mode)方法

用众数来替代簇的均值

采用新的相异性度量处理分类对象

采用基于频率的方法更新簇的众数 可以集成k均值和k众数方法,

对具有数值和分类值的数据进行聚类

K-Means算法改进

1. K-means++算法

K-means算法初始时随机选取数据集中K个点作为聚类中心,不同的初始聚类中心可能导致完全不同的聚类结果。K-means++算法初始的聚类中心之间的相互距离要尽可能的远

2. ISODATA算法

ISODATA的全称是迭代自组织数据分析法,是在K- means算法的基础上,增加对聚类结果的“合并”和“分裂”两个操作,当属于某个类别的样本数过少时则删除该类,当属于某个类别的样本数过多、分散程度较大时,把这个类分裂为两个子类别

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
4月前
|
数据采集 机器学习/深度学习 算法
|
23天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
71 4
|
2月前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
27 1
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
67 2
|
3月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
68 4
|
4月前
|
算法 安全 数据安全/隐私保护
Android经典实战之常见的移动端加密算法和用kotlin进行AES-256加密和解密
本文介绍了移动端开发中常用的数据加密算法,包括对称加密(如 AES 和 DES)、非对称加密(如 RSA)、散列算法(如 SHA-256 和 MD5)及消息认证码(如 HMAC)。重点讲解了如何使用 Kotlin 实现 AES-256 的加密和解密,并提供了详细的代码示例。通过生成密钥、加密和解密数据等步骤,展示了如何在 Kotlin 项目中实现数据的安全加密。
168 1
|
4月前
|
算法 安全 数据安全/隐私保护
Android经典实战之常见的移动端加密算法和用kotlin进行AES-256加密和解密
本文介绍了移动端开发中常用的数据加密算法,包括对称加密(如 AES 和 DES)、非对称加密(如 RSA)、散列算法(如 SHA-256 和 MD5)及消息认证码(如 HMAC)。重点展示了如何使用 Kotlin 实现 AES-256 的加密和解密,提供了详细的代码示例。
88 2
|
4月前
|
机器学习/深度学习 存储 算法
强化学习实战:基于 PyTorch 的环境搭建与算法实现
【8月更文第29天】强化学习是机器学习的一个重要分支,它让智能体通过与环境交互来学习策略,以最大化长期奖励。本文将介绍如何使用PyTorch实现两种经典的强化学习算法——Deep Q-Network (DQN) 和 Actor-Critic Algorithm with Asynchronous Advantage (A3C)。我们将从环境搭建开始,逐步实现算法的核心部分,并给出完整的代码示例。
328 1
|
4月前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树
|
14天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。

热门文章

最新文章