极智AI | deepstream6.0部署yolov3和yolov4教程

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
简介: 大家好,我是极智视界,本文介绍了使用 deepstream6.0 部署 yolov3 和 yolov4 的方法。

大家好,我是极智视界,本文介绍了使用 deepstream6.0 部署 yolov3 和 yolov4 的方法。

Yolo 系列是工程中应用十分广泛的目标检测算法,特别是从 yolov3 开始,逐步的进化,到 yolov4、yolov5 等,工程的接受度越来越高。而 deepstream 是英伟达提出的一套加速深度学习落地的 pipeline 应用,那么当 deepstream 遇到 yolo,会擦出什么样的火花呢,让我们来看。

关于 deepstream 的安装教程,可以查阅我之前写的几篇:《【经验分享】ubuntu 安装 deepstream6.0》、《【经验分享】ubuntu 安装 deepstream5.1》。

先来看下 deepstream6.0 source 的目录结构:

  • apps
  • apps-common
  • audio_apps
  • sample_apps:例程,如 deepstream-app、deepstream-test1...
  • gst-plugins:gstreamer 插件
  • include:头
  • libs:库
  • objectDetector_FasterRCNN:FasterRCNN 示例
  • objectDetector_SSD:SSD 示例
  • objectDetector_Yolo:YOLO 示例
  • tools: 日志相关


1、deepstream6.0 部署 yolov3

通过上述的 objectDetector_Yolo 工程来跑 yolov3,在 objectDetector_Yolo 工程里主要关注以下几个模块:

  • nvdsinfer_custom_impl_Yolo:yolov3 工程实现代码;
  • nvdsinfer_yolo_engine.cpp:解析模型、生成引擎
  • nvdsparsebbox_Yolo.cpp:输出层的解析函数,解析目标检测框
  • trt_utils.cpp 和 trt_utils.h:构造 TensorRT网络的工具类的接口和实现
  • yolo.cpp 和 yolo.h:生成 yolo 引擎的接口和实现
  • yoloPlugins.cpp 和 yoloPlugins.h:YoloLayerV3 and YoloLayerV3PluginCreator 的接口和实现
  • kernels.cu:cuda核底层实现
  • config_infer_xxx_.txt:模型的配置;
  • deepstream_app_config_xxx.txt:Gstreamer nvinfer 插件的配置文件;
  • xxx.cfg、xxx.weights:模型文件;

有以上这些就够了,下面开始。

1.1 下载模型文件

deepstream6.0 SDK 中是没有 yolov3 的模型文件的,需要自行下载,给出传送。

yolov3.cfg:https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg

yolov3.weights:https://link.zhihu.com/?target=https%3A//pjreddie.com/media/files/yolov3.weights

这里多说一句,如果你有 TensorRT 的 yolov3.engine 的话,就不需要原始模型文件了,如果没有 .engine 的话,其实会根据原始文件先生成 .engine。

1.2 配置 config_infer_primary_yolov3.txt

[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
#0=RGB, 1=BGR
model-color-format=0
custom-network-config=yolov3.cfg
model-file=yolov3.weights
labelfile-path=labels.txt
int8-calib-file=yolov3-calibration.table.trt7.0
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=1
num-detected-classes=80
gie-unique-id=1
network-type=0
is-classifier=0
cluster-mode=2
maintain-aspect-ratio=1
parse-bbox-func-name=NvDsInferParseCustomYoloV3
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
engine-create-func-name=NvDsInferYoloCudaEngineGet
[class-attrs-all]
nms-iou-threshold=0.3
threshold=0.7

1.3 配置 deepstream_app_config_yolov3.txt

[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5
[tiled-display]
enable=1
rows=1
columns=1
width=1280
height=720
gpu-id=0
nvbuf-memory-type=0
[source0]
enable=1
type=3
uri=file://../../samples/streams/sample_1080p_h264.mp4
num-sources=1
gpu-id=0
cudadec-memtype=0
[sink0]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=2
sync=0
source-id=0
gpu-id=0
nvbuf-memory-type=0
[osd]
enable=1
gpu-id=0
border-width=1
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0
nvbuf-memory-type=0
[streammux]
gpu-id=0
live-source=0
batch-size=1
batched-push-timeout=40000
width=1920
height=1080
enable-padding=0
nvbuf-memory-type=0
[primary-gie]
enable=1
gpu-id=0
#model-engine-file=model_b1_gpu0_int8.engine
labelfile-path=labels.txt
batch-size=1
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
interval=2
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV3.txt
[tracker]
enable=1
tracker-width=640
tracker-height=384
ll-lib-file=/opt/nvidia/deepstream/deepstream-6.0/lib/libnvds_nvmultiobjecttracker.so
ll-config-file=../../samples/configs/deepstream-app/config_tracker_NvDCF_perf.yml
gpu-id=0
enable-batch-process=1
enable-past-frame=1
display-tracking-id=1
[tests]
file-loop=0

1.4 工程编译

进入到 /opt/nvidia/deepstream/deepstream-6.0/sources/objectDetector_Yolo

cd /opt/nvidia/deepstream/deepstream-6.0/sources/objectDetector_Yolo

依次执行下面两条命令,编译生成 .so 文件:

export CUDA_VER=11.4    # 设置与设备相同的CUDA版本

或者在 /opt/nvidia/deepstream/deepstream-6.0/sources/objectDetector_Yolo/nvdsinfer_custom_impl_Yolo/Makefile 中修改:

然后执行编译

make -C nvdsinfer_custom_impl_Yolo

编译后会生产动态库文件,生成了 libnvdsinfer_custom_impl_Yolo.so 动态库文件。

1.5 执行

deepstream-app -c deepstream_app_config_yoloV3.txt

这里完成了 deepstream6.0 Yolov3 的部署。


2、deepstream6.0 部署 yolov4

这里以不同的方式来部署一下 yolov4,即直接调用 TensorRT Engine,而不是从原始模型导入。

2.1 使用 darknet2onnx2TRT 生成 yolov4.engine

下载 yolov4 darknet 原始权重,给出百度网盘传送:

https://pan.baidu.com/s/1dAGEW8cm-dqK14TbhhVetA     Extraction code:dm5b

clone 模型转换工程:

git clone https://github.com/Tianxiaomo/pytorch-YOLOv4.git Yolov42TRT

开始模型转换:

cd Yolov42TRT
# darknet2onnx
python demo_darknet2onnx.py ./cfg/yolov4.cfg ./cfg/yolov4.weights ./data/dog.jpg 1
# onnx2trt
trtexec --onnx=./yolov4_1_3_608_608_static.onnx --fp16 --saveEngine=./yolov4.engine --device=0

这样就会生成 yolov4.engine。

2.2 deepstream yolov4 推理工程配置

clone deepstream yolov4 推理工程:

git clone https://github.com/NVIDIA-AI-IOT/yolov4_deepstream.git
cd yolov4_deepstream/deepstream_yolov4

配置 config_infer_primary_yoloV4.txt:

[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
#0=RGB, 1=BGR
model-color-format=0
model-engine-file=yolov4.engine
labelfile-path=labels.txt
batch-size=1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=2
num-detected-classes=80
gie-unique-id=1
network-type=0
is-classifier=0
## 0=Group Rectangles, 1=DBSCAN, 2=NMS, 3= DBSCAN+NMS Hybrid, 4 = None(No clustering)
cluster-mode=2
maintain-aspect-ratio=1
parse-bbox-func-name=NvDsInferParseCustomYoloV4
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
[class-attrs-all]
nms-iou-threshold=0.6
pre-cluster-threshold=0.4

配置 deepstream_app_config_yoloV4.txt:

[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5
[tiled-display]
enable=0
rows=1
columns=1
width=1280
height=720
gpu-id=0
nvbuf-memory-type=0
[source0]
enable=1
type=3
uri=file:/opt/nvidia/deepstream/deepstream-6.0/samples/streams/sample_1080p_h264.mp4
num-sources=1
gpu-id=0
cudadec-memtype=0
[sink0]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=3
sync=0
source-id=0
gpu-id=0
nvbuf-memory-type=0
container=1
codec=1
output-file=yolov4.mp4
[osd]
enable=1
gpu-id=0
border-width=1
text-size=12
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0
nvbuf-memory-type=0
[streammux]
gpu-id=0
live-source=0
batch-size=1
batched-push-timeout=40000
width=1280
height=720
enable-padding=0
nvbuf-memory-type=0
[primary-gie]
enable=1
gpu-id=0
model-engine-file=yolov4.engine
labelfile-path=labels.txt
batch-size=1
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
interval=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV4.txt
[tracker]
enable=0
tracker-width=512
tracker-height=320
ll-lib-file=/opt/nvidia/deepstream/deepstream-5.0/lib/libnvds_mot_klt.so
[tests]
file-loop=0

把 2.1 转换生成的 yolov4.engine 拷贝到 /opt/nvidia/deepstream/deepstream-6.0/sources/yolov4_deepstream

2.3 工程编译

进入到 /opt/nvidia/deepstream/deepstream-6.0/sources/yolov4_deepstream

cd /opt/nvidia/deepstream/deepstream-6.0/sources/yolov4_deepstream

依次执行下面两条命令,编译生成 .so 文件:

export CUDA_VER=11.4    # 设置与设备相同的CUDA版本

或者在 /opt/nvidia/deepstream/deepstream-6.0/sources/yolov4_deepstream/nvdsinfer_custom_impl_Yolo/Makefile 中修改:

然后执行编译

make -C nvdsinfer_custom_impl_Yolo

编译后会生产动态库文件,生成了 libnvdsinfer_custom_impl_Yolo.so 动态库文件。

2.4 执行

deepstream-app -c deepstream_app_config_yoloV4.txt

这里完成了 deepstream6.0 Yolov4 的部署。


以上分享了 deepstream6.0 部署 yolov3 和 yolov4 的方法,希望我的分享会对你的学习有一点帮助。


logo_show.gif


相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
2月前
|
存储 关系型数据库 数据库
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
|
20天前
|
人工智能 缓存 JavaScript
Function AI 助力用户自主开发 MCP 服务,一键上云高效部署
在 AI 与云原生融合趋势下,MCP(模型上下文协议)助力开发者高效构建多模型智能应用。Function AI 提供 MCP 服务的一键上云能力,支持代码仓库绑定、OSS 上传、本地交付物及镜像部署等多种方式,实现模型服务快速集成与发布,提升开发效率与云端协同能力。
Function AI 助力用户自主开发 MCP 服务,一键上云高效部署
|
2月前
|
人工智能 自然语言处理 API
AI-Compass LLM推理框架+部署生态:整合vLLM、SGLang、LMDeploy等顶级加速框架,涵盖本地到云端全场景部署
AI-Compass LLM推理框架+部署生态:整合vLLM、SGLang、LMDeploy等顶级加速框架,涵盖本地到云端全场景部署
AI-Compass LLM推理框架+部署生态:整合vLLM、SGLang、LMDeploy等顶级加速框架,涵盖本地到云端全场景部署
|
2月前
|
人工智能 运维 监控
基于MCP的一体化AI管线:从模型训练到部署监控的全链路解析
本文介绍基于MCP(模型控制流水线)的一体化AI部署架构,涵盖从模型训练、自动部署、实时推理到性能监控的完整闭环系统设计,并结合工业制造、能源、IoT等场景,提供代码实现与落地案例,助力企业实现AI自动化运维与智能化升级。
基于MCP的一体化AI管线:从模型训练到部署监控的全链路解析
|
人工智能 缓存 NoSQL
【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
|
30天前
|
机器学习/深度学习 人工智能 PyTorch
GPT为定制AI应用工程师转型第一周学习计划
本计划帮助开发者快速入门AI领域,首周涵盖AI基础理论、Python编程及PyTorch实战。前两天学习机器学习、深度学习与Transformer核心概念,掌握LLM工作原理。第三至四天快速掌握Python语法与Jupyter使用,完成基础编程任务。第五至七天学习PyTorch,动手训练MNIST手写识别模型,理解Tensor操作与神经网络构建。
97 0
|
2月前
|
人工智能 监控 数据可视化
BISHENG下一代企业AI应用的“全能型“LLM软件
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。

热门文章

最新文章