【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现

简介: 【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现

1️⃣文章引言

当今,AI大模型是一个火热的关键词。随着人工智能的迅猛发展,AI大模型在各个领域展现出了巨大的潜力和应用价值。在自动驾驶领域,AI大模型的应用驱动自动驾驶算法具备更强的泛化能力。

那么 AI大模型 为自动驾驶赋能了什么?它的未来发展前景又是怎样?

本文将以主流自动驾驶汽车特斯拉为例,揭开AI大模型在自动驾驶领域的神秘面纱


AI大模型在自动驾驶中的应用涵盖了深度神经网络、卷积神经网络、循环神经网络、

BEV+Transformer特征级融合以及语义分割等方面。通过这些应用,AI大模型能够提供强大的感知和理解能力,为自动驾驶系统的性能和安全性提供关键支持。

2️⃣视觉感知优化汽车之眼

在自动驾驶中,视觉感知是非常重要的一项技术,AI大模型在视觉感知上也有着广泛的应用。

AI大模型可以通过目标检测和跟踪技术,实现对道路上的车辆、行人等目标的准确识别和追踪。这种技术能够帮助自动驾驶系统建立对周围环境的感知,并为决策和规划提供必要的信息。

常见的目标检测算法包括基于传统方法的Haar特征级联分类器、HOG+SVM以及基于深度学习的Faster R-CNN和YOLO等。这些算法通常通过在图像上滑动窗口,并使用分类器来判断窗口内是否存在目标,进而完成目标的定位与识别。

光流估计是通过分析连续帧图像中像素的位移来推断运动信息的技术。

AI大模型可以利用光流估计来检测道路上的动态物体,并进行动态障碍物的预测和跟踪。这对于自动驾驶系统的安全性和稳定性至关重要。

1702553385116.png

光流估计基于亮度恒定和空间连续假设,将相邻图像中同一点的灰度变化关系转化为速度向量场,其中点的运动轨迹是连续、等间距的。通过对图像中的特征点进行跟踪,可以得到这些特征点的速度向量,从而推断出物体在图像中的运动情况。

以下是光流估计的简单代码:

import cv2
cap = cv2.VideoCapture(0)
# 设置参数
feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 初始化点的位置
old_points = None
while True:
    ret, frame = cap.read()
    # 灰度处理
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # 检测特征点
    if old_points is None:
        old_points = cv2.goodFeaturesToTrack(gray, mask=None, **feature_params)
    else:
        # 计算光流
        new_points, status, error = cv2.calcOpticalFlowPyrLK(old_gray, gray, old_points, None, **lk_params)
        # 选取好的新特征点
        good_new = new_points[status == 1]
        # 选取对应的旧特征点
        good_old = old_points[status == 1]
        # 绘制跟踪结果
        for i, (new, old) in enumerate(zip(good_new, good_old)):
            a, b = new.ravel()
            c, d = old.ravel()
            mask = cv2.line(mask, (a, b), (c, d), color[i].tolist(), 2)
            frame = cv2.circle(frame, (a, b), 5, color[i].tolist(), -1)
        img = cv2.add(frame, mask)
        old_gray = gray.copy()  # 更新旧特征点
        old_points = good_new.reshape(-1, 1, 2)  # 更新旧特征点
    cv2.imshow('frame', img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

AI大模型在目标检测与跟踪、路面分割与地面估计、光流估计与动态物体检测等方面的应用,能够提供强大的视觉感知能力,为自动驾驶系统的安全性和性能提供重要支持。


3️⃣神经网络赋能感知算法

神经网络是自动驾驶中的重要组成部分,用于感知、决策和控制,提供智能化的数据处理和驾驶决策能力。

在自动驾驶中,我们主要运用到了深度神经网络DNN、卷积神经网络CNN、循环神经网络RNN三种神经网络。

深度神经网络DNN

深度神经网络是一种由多个神经网络层级组成的模型,每一层都会对输入数据进行一系列的非线性转换和特征提取。通过增加网络的深度,深度神经网络可以学习到更复杂、抽象的特征表示,从而提高模型的表达能力和性能。


在自动驾驶中,深度神经网络常用于图像识别、目标检测、语义分割等感知任务,以及决策和规划等高级驾驶任务。

卷积神经网络CNN

卷积神经网络通过卷积层和池化层的组合,可以从图像中提取特征,并自动学习这些特征的表示。卷积操作可以在输入图像上滑动一个小的窗口,将窗口内的局部信息与卷积核进行卷积运算,以提取不同位置的特征。而池化层则可以对特征图进行下采样,保留最重要的特征信息。通过堆叠多个卷积层和池化层,CNN可以逐渐提取出更高级别的特征,从而实现对图像的分类、检测和分割等任务。

在自动驾驶中,CNN被广泛应用于实现车辆的视觉感知,如道路边界识别障碍物检测交通标志识别等。

循环神经网络RNN

循环神经网络是一种用于处理序列数据的神经网络。与传统的前馈神经网络不同,RNN具有循环连接,使得它可以保持记忆并处理变长的序列输入。

举个例子:

假设我们有一段文本:“The cat sat on the mat”,现在需要将其进行自动翻译为中文。我们可以使用循环神经网络来完成这个任务。


首先,我们定义一个包含若干隐藏层的循环神经网络,并将整个英文传入网络中。在每个时间步长上,网络会从前一个时间步长中的隐藏状态和当前时间步长的输入中计算出当前时间步长对应的隐藏状态,并将其传递到下一个时间步长。在整个文本输入完成后,我们从最后一个隐藏状态中提取出该文本的语义表示。


接着,我们可以将这个语义表示作为输入,连同一个全连接层一起,构成一个解码器。在解码器中,我们在每个时间步长上都输出一个汉字。为了让模型学习到如何正确翻译句子,我们将整个中文文本作为目标输出,并以其与解码器的输出之间的差异作为损失函数,使用反向传播算法对整个模型进行训练。经过数代迭代,循环神经网络将逐渐学会将英文文本翻译成中文。

图示如下:

输入层               隐藏层                   输出层
--------        -----------        --------
|  w   | ------->|   neuron  |------->|   x   |
|  o   |         |    (h)    |        |   n   |
|  r   | <-------|            |<-------|   .
|  d   | ------->|            |------->|   .
--------        ------------       --------

循环神经网络在自然语言处理、语音识别、时间序列预测等任务中广泛应用。RNN能够捕捉到序列中的动态模式,并对未来的内容进行预测或生成。


4️⃣BEV+Transformer创新特征级融合

特征级融合指的是将不同来源或不同类型的特征进行整合,以提升模型性能和表征能力。

BEV是一种俯视图,可以提供关于场景的全局信息和准确的空间定位。BEV以图像的形式展示了车辆周围的环境,每个像素代表一种属性(例如障碍物、道路线等)。

1702553301094.png

而Transformer是一种基于自注意力机制的序列建模方法,它通过多头自注意力机制和前馈神经网络构建,可以同时考虑序列中的长距离依赖关系,并且在处理任意长度的序列时具有可扩展性。

1702553316253.png

使用Transformer网络来处理BEV图像中的特征,并将其编码为高维特征表示。然后,这些特征可以与其他传感器(如相机图像)提取的特征进行融合,形成一个更加综合且全面的特征表示。


简单来说, 使用融合后的特征表示作为输入,目标检测算法会根据综合特征来预测物体的位置、类别和其他属性。


这样的融合可以帮助模型更好地理解和处理复杂的场景,并提升任务的性能,例如目标检测、目标跟踪和行为预测等。


5️⃣语义分割深化场景理解

语义分割是计算机视觉领域的一个任务,旨在将图像中的每个像素标记为对应的语义类别,从而实现对图像的像素级别理解。

1702553434837.png

语义分割能够将图像中的每个像素进行分类,包括物体、背景和其他区域

同时,语义分割也可以区分出图像中不同的物体实例,并给它们分配独立的类别标签,例如目标的姿态、形状和尺寸等特征。

1702553420756.png

这提供了更详细和准确的场景信息,也为各种计算机视觉任务和应用提供了更强大的支持和基础。


总结

AI大模型的发展和成熟为自动驾驶技术带来了巨大的推动力。

未来,自动驾驶将成为安全、高效和舒适出行的代名词,同时对交通方式和城市规划产生深远的影响,为我们创造更美好的出行体验。

目录
相关文章
|
13天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
70 12
|
12天前
|
人工智能 安全 数据安全/隐私保护
文档智能 & RAG让AI大模型更懂业务测评
文档智能 & RAG让AI大模型更懂业务
134 73
|
2天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
36 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
智谱AI推出的GLM-4V-Flash是一款专注于图像理解的免费开放大模型,提供API接口支持用户上传图片URL或Base64编码图片获取详细的图像描述。该模型通过深度学习和卷积神经网络技术,简化了图像分析流程,提高了开发效率,适用于内容审核、辅助视障人士、社交媒体、教育和电子商务等多个应用场景。
87 14
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
|
11天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
64 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
13天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
56 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
13天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
55 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
11天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
16天前
|
机器学习/深度学习 人工智能 编解码
【AI系统】Transformer 模型小型化
本文介绍了几种轻量级的 Transformer 模型,旨在解决传统 Transformer 参数庞大、计算资源消耗大的问题。主要包括 **MobileVit** 和 **MobileFormer** 系列,以及 **EfficientFormer**。MobileVit 通过结合 CNN 和 Transformer 的优势,实现了轻量级视觉模型,特别适合移动设备。MobileFormer 则通过并行结构融合了 MobileNet 和 Transformer,增强了模型的局部和全局表达能力。
50 8
【AI系统】Transformer 模型小型化
|
15天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
33 5
【AI系统】模型转换流程