实现一个进程管理子系统-Linux课程设计1

简介: 实现一个进程管理子系统-Linux课程设计

要求:通过进程管理子系统案例的演示与操作步骤,掌握在 Linux 系统下创建进程并管理进程,并能根据自己的设计在 shell 命令行中管理进程。

下载:Linux操作系统 实现一个进程管理子系统 源代码

1 项目概述

1.1 项目介绍

现代计算机系统中,进程是资源分配和独立运行的基本单位,是操作系统的核心概念。进程调度是进程管理过程的主要组成部分,是必然要发生的事件。在现代操作系统中,进程的并发机制在绝大多数时候,会产生不断变化的进程就绪队列和阻塞队列。处于执行态的进程无论是正常或非正常终止、或转换为阻塞状态,都会引发从就绪队列中,由进程调度选择一个进程进占CPU。


本项目在 Linux 系统下创建进程并管理进程,在 shell 命令行中管理进程。通过编程实现操作系统进程调度子系统的基本功能,其中,必须实现的调度算法有:先来先服务、时间片轮转、多级反馈轮转法、优先级等,在程序设计过程中,在每个调度算法展示时,可以看到所有有关的队列结构和其中的内容,如就绪队列、阻塞队列等结构的动态变化的过程。

 

1.2 项目目的

课程设计是计算机科学与技术专业实践性环节之一,是学习完《操作系统》课程后进行的一次较全面的综合练习。目的在于加深对操作系统的理论、方法和基础知识的理解,掌握操作系统结构、实现机理和各种典型算法,系统地了解操作系统的设计和实现思路,培养我们的系统设计能力,并了解操作系统的发展动向和趋势。

1.3 项目开发环境

我们的项目基于Linux进行开发,需要事先安装好开发环境。

  • Git 项目源码管理。我们采用了github作为Git服务器,便于大家交换代码
  • VMware Workstation Pro v16.0.0 虚拟机软件。VMware是功能最强大的虚拟机软件,用户可在虚拟机同时运行各种操作系统,进行开发、测试、演示和部署软件。
  • Ubuntu 18.04 LTS。Ubuntu是一个以桌面应用为主的GNU/Linux操作系统。
  • PuTTY 0.75。PuTTY是一个Telnet/SSH/rlogin/纯TCP以及串行阜连线软件,多用于远程登录控制功能。
  • MTPuTTY 1.8.0.224。MTPuTTY用于管理不同的PuTTY连接,使用一个标签式的用户界面。每个 PuTTY 连接运行在不同的标签,你可以方便地切换它们。
  • Zsh 5.8。Zsh是一种专为交互使用而设计的 shell,它也是一种强大的脚本语言。
  • oh my zsh。oh-my-zsh是基于zsh的功能做了一个扩展,方便的插件管理、主题自定义,以及漂亮的自动完成效果。

系统配置:

系统:Windows 10 (64bit)

处理器:Intel CPU Core i5-2500K 3.3 GHz

内存:16 GB RAM

显卡:Nvidia GPU GeForce GTX 1650

存储:15 GB of available space

2 需求分析

2.1 系统需求分析

1.加深对进程概念的理解,明确进程和程序的区别。

2.进一步认识并加强进程管理中主要数据结构的设计及进程调度算法。

3.分析进程竞争资源现象,学习解决进程互斥的方法。

4.观察和管理进程——系统在运行过程中可显示或打印各进程的状态及有关参数的变化情况。

2.2 可行性分析

1.项目的目标

项目目标:实现一个进程管理子 ,通过编程实现操作系统进程调度子系统的基本功能,其中,必须实现的调度算法有:先来先服务、时间片轮转、多级反馈轮转法、优先级等,在程序设计过程中,在每个调度算法展示时,可以看到所有有关的队列结构和其中的内容,如就绪队列、阻塞队列等结构的动态变化的过程。


2.设计目的


通过模拟操作系统原理的实现,加深对操作系统工作原理和操作系统实现方法的理解;通过模拟操作系统原理的实现练习编程。


3.任务和要求


(1)良好的沟通和合作能力;


(2)充分利用课上所学的操作系统、程序设计、数据结构等相关知识;


(3)充分利用调试和排错技术;


(4)简单测试驱动模块和桩模块的编写;


(5)查阅相关资料,自学具体课题中涉及的新知识。

2.3 项目实施安排

序号 内容 时间(课时)
1 系统分析 2
2 设计 4
3 编码、测试 6
4 验收 4
合计 16

3 系统设计

3.1 系统结构设计

3.2 系统功能模块设计

1.创建进程——根据进程的顺序依次放入就绪队列;

2.执行进程——管理系统将就绪队列中的第一个进程调入运行队列;

3.将阻塞队列中进程调入就绪队列;

4.封锁进程——管理系统将就绪队列中的第一个进程调入阻塞队列;

5.结束进程——管理系统撤销所选进程。

3.3 进程总体设计

为创建进程,执行进程,将阻塞队列中进程调入就绪队列,封锁进程,撤销已结束的进程,以及控制进程在运行过程中的状态转换:


1.进程创建的主要工作是:

(1)申请空白进程控制块;

(2)程序装入pcb//内存申请;

(3)初始化进程控制块;

(4)将进程链入就绪队列。

2.进程撤销的主要工作是:

(1)将结果写入out文件;

(2)回收进程控制块。

3.4 数据结构

类:

class queuenode

class queue

函数:

void enqueue( char &item);

char dequeue();

void del(char item);

void display();

int find(char item);

int isempty()

3.5 程序源代码

程序源代码
#include <iostream>
#include <stdio.h>
using namespace std;
class queuenode
{
  friend class queue;
private:
  char data;
  queuenode* link;
  queuenode(char d = 0, queuenode* l = NULL) : data(d), link(l) {}
};
class queue
{
public:
  queue() : rear(NULL), front(NULL) {};
  ~queue();
  void enqueue(char& item);
  char dequeue();
  void del(char item);
  void display();
  int find(char item);
  int isempty() { return front == NULL; }
private:
  queuenode* front, * rear;
};
queue::~queue()
{
  queuenode* p;
  while (front != NULL)
  {
    p = front;
    front = front->link;
    delete p;
  }
}
void queue::enqueue(char& item)
{
  if (front == NULL)
    front = rear = new queuenode(item, NULL);
  else
    rear = rear->link = new queuenode(item, NULL);
}
char queue::dequeue()
{
  queuenode* p = front;
  char f = p->data;
  front = front->link;
  delete p;
  return f;
}
void queue::display()
{
  queuenode* p;
  p = front;
  while (p != NULL)
  {
    cout << p->data << "->";
    p = p->link;
  }
  cout << "NULL";
}
int queue::find(char item)
{
  queuenode* w;
  w = front;
M:
  while (w != NULL)
  {
    if (item == w->data)
    {
      return 1;
      break;
    }
    else
    {
      w = w->link;
      goto M;
      return 0;
    }
  }
  if (w == NULL)
    return 0;
}
void queue::del(char item)
{
  queuenode* q, * b;
  q = front;
  while (q->data != item)
  {
    b = q;
    q = q->link;
  }
  if (q == front)
  {
    front = front->link;
    delete q;
  }
  else if (q == rear)
  {
    rear = b;
    rear->link = NULL;
    delete q;
  }
  else
  {
    b->link = q->link;
    delete q;
  }
}
int main()
{
  int n;
  char a;
  cout << "\n[-----------操作系统之进程管理模拟系统(先来先服务算法)------------]\n"
    << endl;
  queue execute, ready, clog; //执行,就绪,阻塞
  cout << "\n[-------请用户输入进程名及其到达cpu的顺序(结束进程数请输入x)------]\n"
    << endl;
  char r;
  r = 'x';
  for (int i = 0;; i++)
  {
    char e[100];
    cout << "输入进程名:"
      << " ";
    cin >> e[i];
    if (e[i] != r)
      ready.enqueue(e[i]);
    else
      break;
  }
A:
  cout << "\n  [------------请用户选择操作------------]\n";
  cout << "\n [1、执行进程……2、将阻塞队列中进程调入就绪队列………]\n";
  cout << "\n [3、封锁进程…………………4、结束进程 …………………]\n";
  cout << "\n [5、退出程序………………………………………………… ]\n选项: ";
  cin >> n;
  if (n == 1)
  {
    if (!execute.isempty())
    {
      cout << "已经有进程在执行!,此操作不能执行\n";
      char w;
      cout << endl;
      cout << "如果要继续请输入#;如果要退出按其它任意键 " << endl;
      cout << "要选择的操作:";
      cin >> w;
      if (w == '#')
        goto L;
      else
        goto E;
    }
    else
    {
      if (!ready.isempty())
      {
        a = ready.dequeue();
        if (a != r)
          execute.enqueue(a);
        goto L;
      }
      else
        goto L;
    }
  }
  else if (n == 2)
  {
    if (!clog.isempty())
    {
      a = clog.dequeue();
      if (a != r)
        ready.enqueue(a);
      goto L;
    }
    else
      goto L;
  }
  else if (n == 3)
  {
    if (!execute.isempty())
    {
      a = execute.dequeue();
      if (a != r)
        clog.enqueue(a);
      goto L;
    }
    else
      goto L;
  }
  else if (n == 4)
  {
    cout << "\n请输入要结束的进程名: ";
    cin >> a;
    if (execute.find(a) || ready.find(a) || clog.find(a))
    {
      if (execute.find(a))
      {
        execute.del(a);
      }
      else if (ready.find(a))
      {
        ready.del(a);
      }
      if (clog.find(a))
      {
        clog.del(a);
      }
      cout << "\n结束进程成功!\n"
        << endl;
      goto L;
    }
    else
      cout << "没有此进程 " << endl;
    goto L;
  L:
    if (n == 1 || n == 2 || n == 3 || n == 4)
    {
      cout << "执行队列" << endl;
      execute.display();
      cout << endl;
      cout << "就绪队列" << endl;
      ready.display();
      cout << endl;
      cout << "阻塞队列" << endl;
      clog.display();
      cout << endl;
      goto A;
    }
    else if (n == 5)
      ;
    else
    {
      cout << "\n你的输入错误!\n";
      goto A;
    }
  }
E:;
  return 0;
}

实现一个进程管理子系统-Linux课程设计2:https://developer.aliyun.com/article/1395397

目录
相关文章
|
6月前
|
并行计算 Linux
Linux内核中的线程和进程实现详解
了解进程和线程如何工作,可以帮助我们更好地编写程序,充分利用多核CPU,实现并行计算,提高系统的响应速度和计算效能。记住,适当平衡进程和线程的使用,既要拥有独立空间的'兄弟',也需要在'家庭'中分享和并行的成员。对于这个世界,现在,你应该有一个全新的认识。
265 67
|
5月前
|
Web App开发 Linux 程序员
获取和理解Linux进程以及其PID的基础知识。
总的来说,理解Linux进程及其PID需要我们明白,进程就如同汽车,负责执行任务,而PID则是独特的车牌号,为我们提供了管理的便利。知道这个,我们就可以更好地理解和操作Linux系统,甚至通过对进程的有效管理,让系统运行得更加顺畅。
153 16
|
5月前
|
Unix Linux
对于Linux的进程概念以及进程状态的理解和解析
现在,我们已经了解了Linux进程的基础知识和进程状态的理解了。这就像我们理解了城市中行人的行走和行为模式!希望这个形象的例子能帮助我们更好地理解这个重要的概念,并在实际应用中发挥作用。
122 20
|
4月前
|
监控 Shell Linux
Linux进程控制(详细讲解)
进程等待是系统通过调用特定的接口(如waitwaitpid)来实现的。来进行对子进程状态检测与回收的功能。
110 0
|
4月前
|
存储 负载均衡 算法
Linux2.6内核进程调度队列
本篇文章是Linux进程系列中的最后一篇文章,本来是想放在上一篇文章的结尾的,但是想了想还是单独写一篇文章吧,虽然说这部分内容是比较难的,所有一般来说是简单的提及带过的,但是为了让大家对进程有更深的理解与认识,还是看了一些别人的文章,然后学习了学习,然后对此做了总结,尽可能详细的介绍明白。最后推荐一篇文章Linux的进程优先级 NI 和 PR - 简书。
133 0
|
4月前
|
存储 Linux Shell
Linux进程概念-详细版(二)
在Linux进程概念-详细版(一)中我们解释了什么是进程,以及进程的各种状态,已经对进程有了一定的认识,那么这篇文章将会继续补全上篇文章剩余没有说到的,进程优先级,环境变量,程序地址空间,进程地址空间,以及调度队列。
99 0
|
4月前
|
Linux 调度 C语言
Linux进程概念-详细版(一)
子进程与父进程代码共享,其子进程直接用父进程的代码,其自己本身无代码,所以子进程无法改动代码,平时所说的修改是修改的数据。为什么要创建子进程:为了让其父子进程执行不同的代码块。子进程的数据相对于父进程是会进行写时拷贝(COW)。
97 0
|
7月前
|
Linux 数据库 Perl
【YashanDB 知识库】如何避免 yasdb 进程被 Linux OOM Killer 杀掉
本文来自YashanDB官网,探讨Linux系统中OOM Killer对数据库服务器的影响及解决方法。当内存接近耗尽时,OOM Killer会杀死占用最多内存的进程,这可能导致数据库主进程被误杀。为避免此问题,可采取两种方法:一是在OS层面关闭OOM Killer,通过修改`/etc/sysctl.conf`文件并重启生效;二是豁免数据库进程,由数据库实例用户借助`sudo`权限调整`oom_score_adj`值。这些措施有助于保护数据库进程免受系统内存管理机制的影响。
|
7月前
|
存储 Linux 调度
【Linux】进程概念和进程状态
本文详细介绍了Linux系统中进程的核心概念与管理机制。从进程的定义出发,阐述了其作为操作系统资源管理的基本单位的重要性,并深入解析了task_struct结构体的内容及其在进程管理中的作用。同时,文章讲解了进程的基本操作(如获取PID、查看进程信息等)、父进程与子进程的关系(重点分析fork函数)、以及进程的三种主要状态(运行、阻塞、挂起)。此外,还探讨了Linux特有的进程状态表示和孤儿进程的处理方式。通过学习这些内容,读者可以更好地理解Linux进程的运行原理并优化系统性能。
254 4
|
7月前
|
Linux Shell
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
394 5