【MATLAB】 CEEMD信号分解+FFT傅里叶频谱变换组合算法

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 【MATLAB】 CEEMD信号分解+FFT傅里叶频谱变换组合算法


展示出图效果

1 CEEMD信号分解算法

CEEMD 分解又叫互补集合经验模态分解,英文全称为 Complementary Ensemble Empirical Mode Decomposition。

CEEMD是对EEMD的改进,它在EEMD的基础上引入了一个自适应的扩展方法,可以更好地解决EMD/EEMD中存在的模态混叠问题。CEEMD的主要步骤如下:

  1. 对原始信号进行若干次随机噪声扰动,得到多个噪声扰动数据集。
  2. 对每个噪声扰动数据集进行EMD分解,得到多个EMD分解集合。
  3. 对于每个EMD分解集合,通过一个自适应的扩展方法,将每个局部模态函数分配到它所属的固有模态函数上,消除模态混叠的影响。
  4. 将每个扩展后的 EMD 分解集合的对应分量进行平均,得到最终的 CEEMD 分解结果。 CEEMD 分解具有良好的局部性和自适应性,能够更准确地分解信号,同时避免了 EEMD 中的模态混叠问题。因此,CEEMD 在信号处理、图像处理和模式识别等领域也得到了广泛的应用。

要想在 MATLAB 中使用 EMD 分解首先要安装 EMD 分解的 MATLAB 工具包。

关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~

EMD 工具包的安装:在 MATLAB 打开 package_emd 文件夹,运行 install_emd. M 以及 index_emd. M 两个函数如下图所示即可完成工具包的安装。

MATLAB 信号分解第三期-CEEMD:

https://mbd.pub/o/bread/ZJWZmplv

信号分解全家桶详情请参见:

https://mbd.pub/o/author-aWWWnHBsYw==/work

2 FFT傅里叶频谱变换算法

傅里叶变换是一种数学方法,用于将一个信号分解成一系列正弦和余弦函数的和,从而更好地理解和处理信号。傅里叶变换在信号处理领域有着广泛的应用,包括音频处理、图像处理等。 具体来说,傅里叶变换的步骤如下:

  1. 给定一个连续时间域函数f(t),其中t为时间。
  2. 对f(t)进行傅里叶变换,得到它的频率域表示F(ω),其中ω为角频率。
  3. F(ω)表示了f(t)中所有频率分量的幅度和相位信息。
  4. 将F(ω)分解成一系列正弦和余弦函数的和,即: F(ω) = ∑[a(k)cos(kω) + b(k)sin(kω)] 其中,k为频率分量的序号,a(k)和b(k)分别为对应的正弦和余弦函数的系数。 傅里叶变换的优点是可以将时间域中的信号转换成频率域中的信号,从而更好地理解信号的频率分量和周期性特征,同时也方便进行一些信号处理任务,例如滤波、降噪等。缺点是傅里叶变换需要对整个信号进行处理,计算量较大,在实时处理等场景下可能会存在较大的延迟。

MATLAB | 频谱分析算法 | 傅里叶变换  开源 MATLAB 代码请转:

https://mbd.pub/o/bread/ZJmVlJxr

MATLAB | 9种频谱分析算法全家桶详情请参见:

https://mbd.pub/o/bread/ZJmVlJ5x

3 CEEMD信号分解+FFT傅里叶频谱变换组合算法

如下为简短的视频操作教程。

【MATLAB 】 CEEMD信号分解+FFT傅里叶频谱变换组合算法请转:

https://mbd.pub/o/bread/ZJ6Wm5pw

【MATLAB 】信号分解+FFT傅里叶频谱变换组合算法全家桶详情请参见:

https://mbd.pub/o/bread/ZJ6Wm5xy

关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~

目录
相关文章
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
17天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
24天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
150 15