【MATLAB】WOA鲸鱼算法优化的VMD信号分解算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 【MATLAB】WOA鲸鱼算法优化的VMD信号分解算法


1 基本定义

WOA-VMD是一种将信号分解成一系列模态函数的方法,它结合了启发式优化算法鲸鱼优化算法(WOA)和变分模态分解(VMD)算法。

VMD是一种基于变分原理的数据分解方法,能够将信号分解成一系列的模态函数。每个模态函数代表了信号的一个特定频率范围的成分,这些成分可以被认为是信号的不同模态。通过对这些模态函数进行重构,可以实现信号的去噪和分析。

WOA是一种启发式优化算法,灵感来源于鲸鱼的迁徙行为。它通过模拟鲸鱼的搜索和迁徙过程来寻找最优解。WOA具有全局收敛性和较强的搜索能力,适用于各种优化问题。

在WOA-VMD中,首先输入待去噪的信号,然后初始化VMD的参数,包括迭代次数、鲸鱼算法的参数等。使用鲸鱼算法优化VMD的参数,得到最优的模态函数。对得到的模态函数进行重构,得到去噪后的信号。

VMD算法的基本原理可以表示为一个约束变分问题的求解,构造的约束变分问题表示为:uK为VMD分解后的第K个IMF分量;ωK为第K个IMF分量的瞬时频率;δ(t)为狄拉克函数;∗为卷积符号; 引入二次惩罚因子α和拉格朗日乘子λ使变分问题不受约束,构造的增广拉格朗日函数如下:采用乘子交替方向算法交替更新得到K个IMF及其对应的中心频率。

K和α影响着VMD的分解性能。若设置的K较小,则信号的多个分量可能同时包含在1个模态中;若K较大,则会导致1个分量包含在多个模态中,迭代得到的中心频率也会重叠。对α而言,若α很大,则带宽限制就会很窄,从而导致有用的频率成分被消除;反之,冗余频率成分将会被保留下来。

因此,本文提出使用鲸鱼优化算法来优化确定最佳参数组合 (K,α),以达到更好的去噪效果。

WOA-VMD算法的具体步骤如下:

  1. 初始化:给定待去噪的信号x(t),设定VMD的参数,包括迭代次数K、惩罚因子α、拉格朗日乘子λ以及鲸鱼算法的参数,如种群大小、搜索次数等。
  2. 构建目标函数:根据原始信号和VMD的参数,构建一个目标函数,该函数用于评估去噪效果的好坏。目标函数可以包括重构误差、信号峰值等指标。
  3. 初始化模态函数:根据原始信号和VMD的参数,初始化模态函数集合{u1(t), u2(t), ..., uk(t)}。每个模态函数代表了信号的一个特定频率范围的成分。
  4. 优化参数:使用鲸鱼算法,根据目标函数,对VMD的参数进行优化。鲸鱼算法通过模拟鲸鱼的搜索和迁徙过程来寻找最优解。在每次迭代中,根据鲸鱼的搜索经验更新最优解,并判断是否满足停止条件,如达到最大迭代次数或目标函数值小于设定的阈值。
  5. 更新模态函数:根据优化后的VMD参数,更新模态函数集合{u1(t), u2(t), ..., uk(t)}。
  6. 重构信号:根据更新后的模态函数集合,重构去噪后的信号y(t)。
  7. 判断停止条件:判断是否满足停止条件,如达到最大迭代次数或目标函数值小于设定的阈值。如果满足停止条件,则输出去噪后的信号y(t);否则,返回步骤4继续迭代优化。

通过以上步骤,WOA-VMD算法可以在全局范围内寻找最优的模态函数和VMD参数,从而得到更好的去噪效果。相比传统的VMD算法,WOA-VMD算法具有更强的全局搜索能力和更好的鲁棒性,可以更好地处理复杂的信号去噪问题。

除了上述提到的步骤,WOA-VMD算法还有一些关键点需要注意:

  1. 初始化VMD参数:VMD的参数包括迭代次数K、惩罚因子α、拉格朗日乘子λ以及模态函数的中心频率。这些参数的初始化对去噪效果有很大的影响。在WOA-VMD算法中,可以使用鲸鱼算法来优化这些参数,以达到更好的去噪效果。
  2. 构建目标函数:目标函数是评估去噪效果好坏的指标。在WOA-VMD算法中,可以根据重构误差、信号峰值等指标来构建目标函数。通过优化目标函数,可以使得WOA-VMD算法在全局范围内寻找最优的模态函数和VMD参数。
  3. 更新模态函数:在每次迭代中,使用优化后的VMD参数更新模态函数集合{u1(t), u2(t), ..., uk(t)}。更新模态函数的过程包括中心频率的更新和模态函数的更新。中心频率的更新可以根据鲸鱼算法的搜索经验进行,模态函数的更新可以根据变分原理进行。
  4. 重构信号:根据更新后的模态函数集合重构去噪后的信号y(t)。重构信号的过程可以通过卷积和积分操作实现。
  5. 判断停止条件:判断是否满足停止条件,如达到最大迭代次数或目标函数值小于设定的阈值。如果满足停止条件,则输出去噪后的信号y(t);否则,返回步骤4继续迭代优化。

通过以上步骤和关键点,WOA-VMD算法可以在全局范围内寻找最优的模态函数和VMD参数,从而得到更好的去噪效果。相比传统的VMD算法,WOA-VMD算法具有更强的全局搜索能力和更好的鲁棒性,可以更好地处理复杂的信号去噪问题。

2 出图效果

附出图效果如下:

附视频教程操作:

3 代码获取

【MATLAB】WOA鲸鱼算法优化的VMD信号分解算法

https://mbd.pub/o/bread/ZZaZlJZx

【MATLAB】MPA 海洋捕食者算法优化的 VMD 信号分解算法

https://mbd.pub/o/bread/ZZaXm5ht

【MATLAB】GWO 灰狼算法优化的 VMD 信号分解算法

https://mbd.pub/o/bread/ZZaXmJxu

【MATLAB】GA 遗传算法优化的 VMD 信号分解算法

https://mbd.pub/o/bread/ZZaVm5xs

【MATLAB】ALO蚁狮算法优化的VMD信号分解算法

https://mbd.pub/o/bread/ZZaTlJly

【MATLAB】Go_Emd信号分解算法

https://mbd.pub/o/bread/ZZWclp5u

【MATLAB】极点对称模态ESMD信号分解算法

https://mbd.pub/o/bread/ZZWcmppv

【MATLAB】5 种高创新性的信号分解算法

https://mbd.pub/o/bread/ZJ6bkplp

【MATLAB】13 种通用的信号分解算法

https://mbd.pub/o/bread/mbd-ZJWZmptt

【MATLAB】史上最全的 18 种信号分解算法全家桶

https://mbd.pub/o/bread/ZJ6bkplq

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~

目录
相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
34 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
2天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。