【MATLAB】mlptdenoise分解+FFT+HHT组合算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 【MATLAB】mlptdenoise分解+FFT+HHT组合算法

【MATLAB】mlptdenoise分解+FFT+HHT组合算法

微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

MLPT Denoise是一种基于小波变换的信号分解算法,可以将信号分解为多个具有不同频率特性的小波分量,并对每个小波分量进行频域分析。它基于最大似然参数调整,能够准确地提取信号的频率信息,具有良好的频率局部特性。该算法具有较好的通用性,能够适应各种类型的信号,包括高频信号和突变信号。通过避免小波变换中的吉布斯现象,它能够较好地保留信号的细节信息。在噪声环境下,它也具有较好的鲁棒性,能够有效地去除噪声。

FFT是一种高效的计算离散傅里叶变换(DFT)和其逆变换的算法。由于其高效性,FFT在短时间内计算出信号在频域上的表达,从而提供信号的频率特征。

HHT是一种用于分析非线性和非平稳信号的数学工具。它将信号分解成一系列固有模态函数(IMF),并计算每个IMF的瞬时频率,从而提供信号的时频特征。

将MLPT Denoise、FFT和HHT组合在一起,可以形成一种强大的分析方法。首先,使用MLPT Denoise将原始信号分解成多个IMF,然后对每个IMF进行FFT计算其频谱,最后使用HHT分析其时频特征。这种组合方法可以综合利用三种方法的优点,对于处理非线性和非平稳信号具有较高的准确性和鲁棒性。

在应用方面,这种组合算法可以应用于信号处理、图像处理、地震信号处理等领域。例如在地震信号处理中,通过使用这种组合算法,可以更准确地识别出地震信号中的特征信息,从而为地震预测和地震研究提供更准确的数据支持。

总的来说,MLPT Denoise+FFT+HHT 组合算法是一种非常有效的信号分析方法,具有广泛的应用前景。

除了在地震信号处理中的应用,这种组合算法还可以应用于其他信号处理领域,例如机械故障诊断、语音信号处理、雷达信号处理等。在这些领域中,该算法可以有效地提取信号的特征信息,并提供准确的时频分析和频谱分析结果,从而为故障诊断和信号识别提供支持。

此外,该算法还可以应用于图像处理领域。通过将图像分解为多个小波分量,并对每个分量进行频域分析和时频分析,可以准确地提取图像的特征信息,并实现图像的压缩和去噪。这种组合算法还可以应用于医学图像处理中,为医学诊断提供更准确的数据支持。

在实现方面,这种组合算法需要使用到多种数学工具和技术,包括小波变换、傅里叶变换、HHT等。为了提高算法的效率和准确性,还需要进行参数优化和选择,例如选择合适的小波基函数、调整分解层数、选择合适的阈值等。此外,为了实现实时处理和嵌入式应用,还需要进行算法优化和简化。

总之,MLPT Denoise+FFT+HHT 组合算法是一种非常强大的信号分析方法,具有广泛的应用前景和实现挑战。通过不断的研究和实践,可以进一步完善这种算法的性能和应用范围,为信号处理领域和其他领域的发展提供支持。

除了以上提到的应用领域,MLPT Denoise+FFT+HHT组合算法还可以应用于其他领域,例如金融时间序列分析、气候变化研究、化学过程分析等。在这些领域中,该算法可以有效地提取时间序列的特征信息,并提供准确的时频分析和频谱分析结果,从而为数据分析和预测提供支持。

此外,该算法还可以与其他算法进行结合,以实现更强大的功能。例如,可以将MLPT Denoise与机器学习算法结合,以实现信号分类和识别;可以将FFT与深度学习算法结合,以实现图像分类和识别;可以将HHT与模式识别算法结合,以实现时频聚类和特征提取。

在研究方面,未来可以对MLPT Denoise、FFT和HHT算法进行深入研究和改进,以提高其性能和准确性。例如,可以研究更高效的算法和优化方法,以实现更快速的计算和更准确的分解;可以研究更先进的时频分析方法,以实现更准确的时频特征提取和聚类;可以研究更先进的IMF分解方法,以实现更准确的信号分解和特征提取。

总之,MLPT Denoise+FFT+HHT组合算法是一种非常有前途的信号分析方法,具有广泛的应用前景和实现挑战。未来可以通过不断的研究和实践,进一步推动这种算法的发展和应用,为信号处理和其他领域的发展做出贡献。

2 出图效果

附出图效果如下:

附视频教程操作:

3 代码获取

【MATLAB】mlptdenoise 分解+FFT+HHT 组合算法

https://mbd.pub/o/bread/ZZeYmJhr

【MATLAB】EWT分解+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZeXlZtu

【MATLAB】RLMD分解+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZeWkplp

【MATLAB】LMD分解+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZeVmJpv

【MATLAB】VMD分解+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZeUl5pp

【MATLAB】小波分解+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZeUk59w

【MATLAB】ICEEMDAN+FFT+HHT 组合算法

https://mbd.pub/o/bread/ZZeTlp5s

【MATLAB】CEEMDAN+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZacmZZp

【MATLAB】CEEMD+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZackp1r

【MATLAB】EEMD+FFT+HHT 组合算法

https://mbd.pub/o/bread/ZZablpxr

【MATLAB】EMD+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZablJxs

MATLAB 开源算法及绘图代码合集汇总一览

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


1、感谢关注 Lwcah 的个人公众号,有关资源获取,请公众号后台发送推文末的关键词,自助获取。

2、若要添加个人微信号,请后台发送关键词:微信号。

3、若要进微信群:Lwcah 科研技巧群 3。请添加个人微信号后进群(大家沉浸式科研,广告勿扰),不定时更新科研技巧类推文。可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。


记得关注公众号,并设为星标哦~谢谢啦~


万请尊重原创成果!!!

声明:本公众号(Lwcah)的原创成果,在未经允许的情况下,请勿用于任何商业用途!

And,今后我会尽可能出一些更高质量的推文与大家共享,再一次感谢大家的关注与支持~也特别感谢大家对公众号的传播与分享,每天新增的关注都是我持续更新的动力!

您的每一次点赞,在看,关注和分享都是对我最大的鼓励~谢谢~


目录
相关文章
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
2天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
17天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。