小米二面:Redis 如何保证数据不丢失?

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 小米二面:Redis 如何保证数据不丢失?

前段时间表妹收到了小米秋招补录的面试邀请,一面还算顺利,很快就通过了,但在看二面面试录屏的时候,我发现了一个问题,回答的不是很好,也就是我们今天要聊的这个问题:Redis 如何保证数据不丢失?

很多人看到这个问题的第一反应是,这个问题不难,就是 Redis 的持久化技术嘛!但如果你这样回答,可能只能得 50 分,连及格线都没到,为什么呢?

因为,Redis 保证数据不丢失的主要手段有两个:

  1. 持久化
  2. 集群运行

我们分别来看它们两的具体实现细节。

1.Redis 持久化

持久化是指将数据从内存中存储到持久化存储介质中(如硬盘)的过程,以便在程序重启或者系统崩溃等情况下,能够从持久化存储介质中恢复数据。

Redis 4.0 之后支持以下 3 种持久化方案:

  1. RDB(Redis DataBase)持久化:快照方式持久化,将某一个时刻的内存数据,以二进制的方式写入磁盘;
  2. AOF(Append Only File)持久化:文件追加持久化,记录所有非查询操作命令,并以文本的形式追加到文件中;
  3. 混合持久化:RDB + AOF 混合方式的持久化,Redis 4.0 之后新增的方式,混合持久化是结合了 RDB 和 AOF 的优点,在写入的时候,先把当前的数据以 RDB 的形式写入文件的开头,再将后续的操作命令以 AOF 的格式存入文件,这样既能保证 Redis 重启时的速度,又能减低数据丢失的风险。

    1.1 RDB 持久化

    RDB(Redis Database)是将某一个时刻的内存快照(Snapshot),以二进制的方式写入磁盘的持久化机制。

RDB 持久化机制有以下优缺点:

优点:

  1. 速度快:相对于 AOF 持久化方式,RDB 持久化速度更快,因为它只需要在指定的时间间隔内将数据从内存中写入到磁盘上。
  2. 空间占用小:RDB 持久化会将数据保存在一个压缩的二进制文件中,因此相对于 AOF 持久化方式,它占用的磁盘空间更小。
  3. 恢复速度快:因为 RDB 文件是一个完整的数据库快照,所以在 Redis 重启后,可以非常快速地将数据恢复到内存中。
  4. 可靠性高:RDB 持久化方式可以保证数据的可靠性,因为数据会在指定时间间隔内自动写入磁盘,即使 Redis 进程崩溃或者服务器断电,也可以通过加载最近的一次快照文件恢复数据。

缺点:

  1. 数据可能会丢失:RDB 持久化方式只能保证数据在指定时间间隔内写入磁盘,因此如果 Redis 进程崩溃或者服务器断电,从最后一次快照保存到崩溃的时间点之间的数据可能会丢失。
  2. 实时性差:因为 RDB 持久化是定期执行的,因此从最后一次快照保存到当前时间点之间的数据可能会丢失。如果需要更高的实时性,可以使用 AOF 持久化方式。

所以,RDB 持久化方式适合用于对数据可靠性要求较高,但对实时性要求不高的场景,如 Redis 中的备份和数据恢复等。

1.2 AOF 持久化

AOF(Append Only File)它是将 Redis 每个非查询操作命令都追加记录到文件(appendonly.aof)中的持久化机制。

AOF 持久化机制有以下优缺点:

优点:

  1. 数据不容易丢失:AOF 持久化方式会将 Redis 执行的每一个写命令记录到一个文件中,因此即使 Redis 进程崩溃或者服务器断电,也可以通过重放 AOF 文件中的命令来恢复数据。
  2. 实时性好:由于 AOF 持久化方式是将每一个写命令记录到文件中,因此它的实时性比 RDB 持久化方式更好。
  3. 数据可读性强:AOF 持久化文件是一个纯文本文件,可以被人类读取和理解,因此可以方便地进行数据备份和恢复操作。

缺点:

  1. 写入性能略低:由于 AOF 持久化方式需要将每一个写命令记录到文件中,因此相对于 RDB 持久化方式,它的写入性能略低。
  2. 占用磁盘空间大:由于 AOF 持久化方式需要记录每一个写命令,因此相对于 RDB 持久化方式,它占用的磁盘空间更大。
  3. AOF 文件可能会出现损坏:由于 AOF 文件是不断地追加写入的,因此如果文件损坏,可能会导致数据无法恢复。

所以,AOF 持久化方式适合用于对数据实时性要求较高,但对数据大小和写入性能要求相对较低的场景,如需要对数据进行实时备份的应用场景。

1.3 混合持久化

Redis 混合持久化是指将 RDB 持久化方式和 AOF 持久化方式结合起来使用,以充分发挥它们的优势,同时避免它们的缺点。

它的优缺点如下:

优点:混合持久化结合了 RDB 和 AOF 持久化的优点,开头为 RDB 的格式,使得 Redis 可以更快的启动,同时结合 AOF 的优点,有减低了大量数据丢失的风险。

缺点

  1. 实现复杂度高:混合持久化需要同时维护 RDB 文件和 AOF 文件,因此实现复杂度相对于单独使用 RDB 或 AOF 持久化方式要高。
  2. 可读性差:AOF 文件中添加了 RDB 格式的内容,使得 AOF 文件的可读性变得很差;
  3. 兼容性差:如果开启混合持久化,那么此混合持久化 AOF 文件,就不能用在 Redis 4.0 之前版本了。

所以,Redis 混合持久化方式适合用于,需要兼顾启动速度和减低数据丢失的场景。但需要注意的是,混合持久化的实现复杂度较高、可读性差,只能用于 Redis 4.0 以上版本,因此在选择时需要根据实际情况进行权衡。

2.Redis 集群

Redis 集群是将原先的单服务器,变为了多服务器,这样 Redis 保存的数据也从一台服务器变成了多台服务器,这样即使有一台服务器出问题了,其他的服务器还有备份数据。所以使用 Redis 集群除了可以保证高可用,还保证了数据不丢失。

Redis 集群运行有以下 3 种方案:

  1. 主从同步
  2. 哨兵模式
  3. Redis Cluster

    2.1 主从同步

    主从同步 (主从复制) 是 Redis 高可用服务的基石,也是多机运行中最基础的一个。我们把主要存储数据的节点叫做主节点 (master),把其他通过复制主节点数据的副本节点叫做从节点 (slave),如下图所示:
    主从同步.png
    在 Redis 中一个主节点可以拥有多个从节点,一个从节点也可以是其他服务器的主节点,如下图所示:
    主从同步-从从模式.png

    2.2 哨兵模式

    主从同步存在一个致命的问题,当主节点奔溃之后,需要人工干预才能恢复 Redis 的正常使用。
    所以我们需要一个自动的工具——Redis Sentinel (哨兵模式) 来把手动的过程变成自动的,让 Redis 拥有自动容灾恢复 (failover) 的能力。
    哨兵模式如下所示:
    哨兵模式.png

    小贴士:Redis Sentinel 的最小分配单位是一主一从。

2.3 Redis Cluster

Redis Cluster 是 Redis 3.0 版本推出的 Redis 集群方案,它将数据分布在不同的服务区上,以此来降低系统对单主节点的依赖,并且可以大大的提高 Redis 服务的读写性能。
Redis Cluster 架构图如下所示:
image.png
从上图可以看出 Redis 的主从同步只能有一个主节点,而 Redis Cluster 可以拥有无数个主从节点,因此 Redis Cluster 拥有更强大的平行扩展能力,也就是说当 Redis Cluster 拥有两个主从节点时,从理论上来讲 Redis 的性能相比于主从来说性能提升了两倍,并且 Redis Cluster 也有自动容灾恢复的机制。

小结

Redis 保证数据不丢失的主要手段有两个:持久化和集群运行。其中持久化有三种实现:RDB、AOF、混合持久化;而集群(运行)也包含了三种实现:主从复制、哨兵模式和 Redis Cluster。

本文已收录到我的面试小站 www.javacn.site,其中包含的内容有:Redis、JVM、并发、并发、MySQL、Spring、Spring MVC、Spring Boot、Spring Cloud、MyBatis、设计模式、消息队列等模块。

相关文章
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
5月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
323 67
|
11月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
1017 16
|
12月前
|
监控 NoSQL Java
场景题:百万数据插入Redis有哪些实现方案?
场景题:百万数据插入Redis有哪些实现方案?
150 1
场景题:百万数据插入Redis有哪些实现方案?
|
4月前
|
存储 缓存 NoSQL
告别数据僵尸!Redis实现自动清理过期键值对
在数据激增的时代,Redis如同内存管理的智能管家,支持键值对的自动过期功能,实现“数据保鲜”。通过`EXPIRE`设定生命倒计时、`TTL`查询剩余时间,结合惰性删除与定期清理策略,Redis高效维护内存秩序。本文以Python实战演示其过期机制,并提供最佳实践指南,助你掌握数据生命周期管理的艺术,让数据优雅退场。
271 0
|
7月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作
|
7月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
7月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供 8 种数据淘汰策略: 淘汰易失数据(具有过期时间的数据) 1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 2. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 3. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 4. volatile-random:从已设置过期
|
7月前
|
NoSQL Redis
Redis的数据持久化策略有哪些 ?
Redis 提供了两种方式,实现数据的持久化到硬盘。 1. RDB 持久化(全量),是指在指定的时间间隔内将内存中的数据集快照写入磁盘。 2. AOF持久化(增量),以日志的形式记录服务器所处理的每一个写、删除操作 RDB和AOF一起使用, 在Redis4.0版本支持混合持久化方式 ( 设置 aof-use-rdb-preamble yes )
|
7月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
1. 惰性删除 :只会在取出 key 的时候才对数据进行过期检查。这样对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断 a. 如果未过期,返回数据 b. 发现已过期,删除,返回nil 2. 定期删除 : 每隔一段时间抽取一批 key 执行删除过期 key 操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。默认情况下 Redis 定期检查的频率是每秒扫描 10 次,用于定期清除过期键。当然此值还可以通过配置文件进行设置,在 redis.conf 中修改配置“hz”