你应该知晓的Rust Web 框架(二)

简介: 你应该知晓的Rust Web 框架(二)

4. Warp

Warp 是一个构建在 Tokio 之上的 Web 框架,而且是一个非常好的框架。它与我们之前看到的其他框架非常不同。

WarpAxum 有一些共同的特点:它构建在 TokioHyper 之上,并利用了 Tower 中间件。然而,它在方法上有很大的不同。Warp 是建立在 Filter trait 之上的。

Warp 中,我们构建一系列应用于传入请求的过滤器,并将请求传递到管道直到达到末端。过滤器可以链接,它们可以组合。这使我们能够构建非常复杂的管道,但仍然易于理解。

Warp 也比 Axum 更接近 Tokio 生态系统,这意味着我们可能会在没有任何粘合特性的情况下处理更多 Tokio 结构和概念。

Warp 采用非常功能化的方法,如果这是我们的编程风格,我们将喜欢 Warp 的表达能力和可组合性。当我们查看 Warp 代码片段时,它通常读起来像正在发生的事情的故事,这在 Rust 中能够实现是有趣且令人惊讶的。

然而,随着这些不同的函数和过滤器被链接在一起,Warp 中的类型变得非常长且非常复杂,而且难以理解。错误消息也是如此,可能是难以理解的一大堆文本。

Warp 是一个很棒的框架。但是,它并不是最适合初学者的框架,也不是最流行的框架。这意味着我们可能在寻找帮助和资源方面会更加困难。但它非常适用于快速小型应用程序

Warp 示例

来自其示例仓库的 WebSocket 聊天的 Warp 应用程序的简化示例:

// 定义了一个静态的原子 usize 计数器,用于为每个连接的用户分配唯一的用户ID。
static NEXT_USER_ID: AtomicUsize = AtomicUsize::new(1);
// 当前连接用户的状态。
//  定义了一个类型别名 Users,它是一个原子引用计数的可读写锁的 HashMap,将用户ID映射到消息的发送器。
// Arc 是原子引用计数的智能指针,RwLock 是读写锁。
// - 键是其id
// - 值是`warp::ws::Message`的发送器
type Users = Arc<RwLock<HashMap<usize, mpsc::UnboundedSender<Message>>>>;
#[tokio::main]
async fn main() {
    // 创建了一个 users 变量,用于存储连接的用户信息
    let users = Users::default();
    // 将其包装成 Warp 过滤器,以便在不同的路由中共享用户状态。
    let users = warp::any().map(move || users.clone());
    // chat 路由处理 WebSocket 握手
    let chat = warp::path("chat")
        // `ws()`过滤器将准备WebSocket握手...
        .and(warp::ws())
        .and(users)
        // 调用 user_connected 函数处理 WebSocket 连接。
        .map(|ws: warp::ws::Ws, users| {
            // 如果握手成功,将调用我们的函数。
            ws.on_upgrade(move |socket| user_connected(socket, users))
        });
    // 处理 HTTP GET 请求,返回一个包含聊天室链接的 HTML 页面
    let index = warp::path::end().map(|| warp::reply::html(INDEX_HTML));
    let routes = index.or(chat);
    warp::serve(routes).run(([127, 0, 0, 1], 3030)).await;
}
async fn user_connected(ws: WebSocket, users: Users) {
    // 使用计数器为此用户分配新的唯一ID。
    let my_id = NEXT_USER_ID.fetch_add(1, Ordering::Relaxed);
    eprintln!("new chat user: {}", my_id);
    // 将套接字拆分为消息的发送器和接收器。
    let (mut user_ws_tx, mut user_ws_rx) = ws.split();
    // 创建一个新的消息通道 (mpsc::unbounded_channel) 用于将用户的消息广播给其他用户
    let (tx, rx) = mpsc::unbounded_channel();
    let mut rx = UnboundedReceiverStream::new(rx);
    tokio::task::spawn(async move {
        // 不断接收用户的消息。一旦用户断开连接,就会退出这个循环。
        while let Some(message) = rx.next().await {
            user_ws_tx
                .send(message)
                .unwrap_or_else(|e| {
                    eprintln!("websocket send error: {}", e);
                })
                .await;
        }
    });
    //将发送器保存在我们的已连接用户列表中。
    users.write().await.insert(my_id, tx);
    // 返回一个基本上是管理此特定用户连接的状态机的“Future”。
    // 每当用户发送消息时,将其广播给
    // 所有其他用户...
    while let Some(result) = user_ws_rx.next().await {
        let msg = match result {
            Ok(msg) => msg,
            Err(e) => {
                eprintln!("websocket error(uid={}): {}", my_id, e);
                break;
            }
        };
        user_message(my_id, msg, &users).await;
    }
    // 只要用户保持连接,user_ws_rx流就会继续处理。一旦他们断开连接,那么...
    user_disconnected(my_id, &users).await;
}
// 处理用户发送的消息。它跳过非文本消息,将文本消息格式化为 <User#ID>: Message,然后将其广播给所有其他用户。
async fn user_message(my_id: usize, msg: Message, users: &Users) {
    // 跳过任何非文本消息...
    let msg = if let Ok(s) = msg.to_str() {
        s
    } else {
        return;
    };
    let new_msg = format!("<User#{}>: {}", my_id, msg);
    // 来自此用户的新消息,将其发送给所有其他用户(除了相同的uid)...
    for (&uid, tx) in users.read().await.iter() {
        if my_id != uid {
            if let Err(_disconnected) = tx.send(Message::text(new_msg.clone())) {
                // 发送器已断开连接,我们的`user_disconnected`代码
                // 应该在另一个任务中执行,这里没有更多的事情要做。
            }
        }
    }
}
async fn user_disconnected(my_id: usize, users: &Users) {
    eprintln!("good bye user: {}", my_id);
    // 流关闭,因此从用户列表中删除
    users.write().await.remove(&my_id);
}

Warp 特点

  • 函数式方法。
  • 良好的表达能力。
  • 通过接近 TokioTowerHyper 构建强大的生态系统。
  • 不适合初学者的框架

5. Tide

Tide 是一个建立在 async-std 运行时之上的极简主义 Web 框架。极简主义的方法意味着我们得到了一个非常小的 API 表面。Tide 中的处理函数是 async fn,接受一个 Request 并返回一个 Responsetide::Result。提取数据或发送正确的响应格式由我们自行完成。

虽然这可能对我们来说是更多的工作,但也更直接,意味着我们完全掌控正在发生的事情。在某些情况下,能够离 HTTP 请求和响应如此近是一种愉悦,使事情变得更容易。

Tide 的中间件方法与我们从 Tower 中了解的类似,但 Tide 公开了 async trait crate,使实现变得更加容易。

Tide 示例

来自其示例仓库的用户会话示例:

// async-std crate 提供的异步 main 函数。它返回一个 Result,表示可能的错误。
#[async_std::main]
async fn main() -> Result<(), std::io::Error> {
    // 使用 femme crate 启用颜色日志。这是一个美观的日志记录库,可以使日志输出更易读。
    femme::start();
    // 创建一个 Tide 应用程序实例
    let mut app = tide::new();
    // 添加一个日志中间件,用于记录请求和响应的日志信息。
    app.with(tide::log::LogMiddleware::new());
    // 添加一个会话中间件,用于处理会话数据。这里使用内存存储,并提供一个密钥(TIDE_SECRET),用于加密和验证会话数据。
    app.with(tide::sessions::SessionMiddleware::new(
        tide::sessions::MemoryStore::new(),
        std::env::var("TIDE_SECRET")
            .expect(
                "Please provide a TIDE_SECRET value of at \
                      least 32 bytes in order to run this example",
            )
            .as_bytes(),
    ));
    // 添加一个 Before 中间件,它在处理请求之前执行。在这里,它用于增加访问计数,存储在会话中。
    app.with(tide::utils::Before(
        |mut request: tide::Request<()>| async move {
            let session = request.session_mut();
            let visits: usize = session.get("visits").unwrap_or_default();
            session.insert("visits", visits + 1).unwrap();
            request
        },
    ));
    // 定义了一个处理根路径的GET请求的路由。这个路由通过 async move 来处理请求,获取会话中的访问计数,并返回一个包含访问次数的字符串。
    app.at("/").get(|req: tide::Request<()>| async move {
        let visits: usize = req.session().get("visits").unwrap();
        Ok(format!("you have visited this website {} times", visits))
    });
    // 定义了一个处理 "/reset" 路径的GET请求的路由。这个路由通过 async move 处理请求,将会话数据清除,然后重定向到根路径
    app.at("/reset")
        .get(|mut req: tide::Request<()>| async move {
            req.session_mut().destroy();
            Ok(tide::Redirect::new("/"))
        });
    // 启动应用程序并监听在 "127.0.0.1:8080" 地址上。使用 await? 处理可能的启动错误。
    app.listen("127.0.0.1:8080").await?;
    Ok(())
}

Tide 简要概述

  • 极简主义方法。
  • 使用 async-std 运行时。
  • 简单的处理函数。
  • 异步特性的试验场。

6. Poem

Poem 声称自己是一个功能齐全但易于使用的 Web 框架。乍一看,它的使用方式与 Axum 非常相似,唯一的区别是它需要使用相应的宏标记处理程序函数。它还建立在 TokioHyper 之上,完全兼容 Tower 中间件,同时仍然暴露自己的中间件特性。

Poem 的中间件特性也非常简单易用。我们可以直接为所有或特定的 Endpoint(Poem 表达一切都可以处理 HTTP 请求的方式)实现该特性,或者只需编写一个接受 Endpoint 作为参数的异步函数。

Poem 不仅与更广泛的生态系统中的许多功能兼容,而且还具有丰富的功能,包括对 OpenAPISwagger 文档的全面支持。它不仅限于基于 HTTP 的 Web 服务,还可以用于基于 TonicgRPC 服务,甚至在 Lambda 函数中使用,而无需切换框架。添加对 OpenTelemetryRedisPrometheus 等的支持,我们就可以勾选所有现代企业级应用程序 Web 框架的所有框。

Poem 仍然处于 0.x 版本,但如果保持势头并交付出色的 1.0 版本,这将是一个值得关注的框架!

Poem 示例

来自其示例仓库的 WebSocket 聊天的缩写版本:

// 注解表示这是一个处理器函数,用于处理 WebSocket 请求
#[handler]
fn ws(
    // 提取了 WebSocket 路径中的名字参数
    Path(name): Path<String>,
    // WebSocket 对象,表示与客户端的连接
    ws: WebSocket,
    // 是一个数据提取器,用于获取广播通道的发送器。
    sender: Data<&tokio::sync::broadcast::Sender<String>>,
) -> impl IntoResponse {
    // 克隆了广播通道的发送器 sender。
    let sender = sender.clone();
    // 它订阅了广播通道,创建了一个接收器 receiver
    let mut receiver = sender.subscribe();
    //  处理 WebSocket 连接升级
    ws.on_upgrade(move |socket| async move {
        // 将连接的读写部分拆分为 sink 和 stream
        let (mut sink, mut stream) = socket.split();
        // 从 WebSocket 客户端接收消息
        // 如果是文本消息,则将其格式化为 {name}: {text} 的形式,并通过广播通道发送。
        // 如果发送失败(例如,通道关闭),则任务终止。
        tokio::spawn(async move {
            while let Some(Ok(msg)) = stream.next().await {
                if let Message::Text(text) = msg {
                    if sender.send(format!("{name}: {text}")).is_err() {
                        break;
                    }
                }
            }
        });
        // 从广播通道接收消息,并将其发送到 WebSocket 客户端
        tokio::spawn(async move {
            while let Ok(msg) = receiver.recv().await {
                if sink.send(Message::Text(msg)).await.is_err() {
                    break;
                }
            }
        });
    })
}
#[tokio::main]
async fn main() -> Result<(), std::io::Error> {
    // 使用 tide::Route 创建了一个路由,其中包括两个路径:
    // - / 路径处理 HTTP GET 请求,调用 index 函数。
    // - /ws/:name 路径处理 WebSocket 请求,调用 ws 函数。
    let app = Route::new().at("/", get(index)).at(
        "/ws/:name",
        // 通过 tokio::sync::broadcast::channel 创建一个广播通道;
        // 并通过 tokio::sync::broadcast::channel::<String>(32).0 
        //   获取其发送器,将其作为数据传递给 ws 处理函数
        get(ws.data(tokio::sync::broadcast::channel::<String>(32).0)),
    );
    // 创建了一个服务器实例
    Server::new(TcpListener::bind("127.0.0.1:3000"))
         // 启动服务器,并等待其完成运行。
        .run(app)
        .await
}

Poem 简要概述

  • 丰富的功能集。
  • 与 Tokio 生态系统兼容。
  • 易于使用。
  • 适用于 gRPC 和 Lambda。

后记

正如我们所见,Rust Web 框架的世界非常多样化。没有一种解决方案适用于所有情况,我们需要选择最符合我们需求的框架。如果我们刚刚开始,我建议我们选择 ActixAxum,因为它们是最适合初学者的框架,而且它们有着出色的文档。

分享是一种态度

全文完,既然看到这里了,如果觉得不错,随手点个赞和“在看”吧。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
11天前
|
中间件 Go API
【Go 语言专栏】Go 语言中的 Web 框架比较与选择
【4月更文挑战第30天】本文对比了Go语言中的四个常见Web框架:功能全面的Beego、轻量级高性能的Gin、简洁高效的Echo,以及各自的性能、功能特性、社区支持。选择框架时需考虑项目需求、性能要求、团队经验和社区生态。开发者应根据具体情况进行权衡,以找到最适合的框架。
|
11天前
|
机器学习/深度学习 前端开发 数据可视化
数据分析web可视化神器---streamlit框架,无需懂前端也能搭建出精美的web网站页面
数据分析web可视化神器---streamlit框架,无需懂前端也能搭建出精美的web网站页面
|
11天前
|
开发框架 前端开发 JavaScript
学会Web UI框架--Bootstrap,快速搭建出漂亮的前端界面
学会Web UI框架--Bootstrap,快速搭建出漂亮的前端界面
|
11天前
|
缓存 前端开发 安全
Python web框架fastapi中间件的使用,CORS跨域详解
Python web框架fastapi中间件的使用,CORS跨域详解
|
11天前
|
API 数据库 Python
Python web框架fastapi数据库操作ORM(二)增删改查逻辑实现方法
Python web框架fastapi数据库操作ORM(二)增删改查逻辑实现方法
|
11天前
|
关系型数据库 MySQL API
Python web框架fastapi数据库操作ORM(一)
Python web框架fastapi数据库操作ORM(一)
|
11天前
|
Python
python web框架fastapi模板渲染--Jinja2使用技巧总结
python web框架fastapi模板渲染--Jinja2使用技巧总结
|
Go Docker 容器
gin web框架docker多阶段构建实战
自从知道有多阶段构建以后,就实战了一把,顺便记录下来,供参考
876 0
|
9天前
|
关系型数据库 MySQL
web简易开发(二){html5+php实现文件上传及通过关键字搜索已上传图片)}
web简易开发(二){html5+php实现文件上传及通过关键字搜索已上传图片)}
|
2天前
|
前端开发 JavaScript Java
Java与Web开发的结合:JSP与Servlet
Java与Web开发的结合:JSP与Servlet
8 0