数学建模——最大流问题(配合例子说明)(二)

简介: 数学建模——最大流问题(配合例子说明)

【模型求解】

编写lingo求解程序,计算得个各条边的实际流量见表2和总费用为50.(总流量为7时)

sets:
dian/vs v1 v2 v3 v4 vt/:;
bian(dian,dian)/vs,v1 vs,v3 vs,v4 v1,v2 v1,v3 v2,v3 v2,vt v3,vt v3,v4 v4,v3 v4,vt/:c,x,d;
endsets
data:
c=4 3 4 2 1 2 4 2 3 2 3;
d=3 3 2 4 2 1 3 3 3 2 4;
enddata
min=@sum(bian:d*x);
w=@sum(bian(i,j)|j#eq#6:x(i,j));
@for(bian(i,j):x(i,j)<c(i,j));
@for(dian(k)|k#ne#1#and#k#ne#6:@sum(bian(i,k):x(i,k))=@sum(bian(k,j):x(k,j)));
w=7;

表2 最小费用的流量分布

fij

V1

V2

V3

v4

vt

Vs

2

2

3

V1

2

V2

2

V3

2

v4

3

三、最大匹配问题

问题来源:

 有n个人,m件工作,每个人的工作能力不同,各能胜任某几项工作。假设每个只做一件工作;一件工作只需一个人做,怎样分配才能使得尽量多的工人有工作。

转化为匹配问题:

  •  x1,x2,…,xn表示工人;
  • y1,y2,…,ym表示工作,
  • X表示{x1,x2,…,xn}, Y表示{y1,y2,…,ym}。

这样就产生一个二部图G=(X,Y,E),其中E中的边(xi,yj)就表示xi胜任工作yj。如图4所示

匹配定义:

二部图G=(X,Y,E),M是E的子集,M中任意两条边都没有公共端点,则称M是G的一个匹配(对集)。使得|M|达到最大的匹配称为最大匹配。

例3

设有5位待业者,5项工作,他们各自能胜任的工作情况如图5所示,设计一个就业方案,使尽量多人能就业。

【问题假设】

一人最多一工作,一工作最多一人。

【问题分析】

注意到,对xi来说,出次可能不唯一,但最多有一条边可能实现;对yj来说,入次可能不唯一,但也最多一条边实现。根据流量平衡,在xi前置vs作为发点;在yj后置vt作为汇点,将图5改造为流量网络,见图六。

如图6所示流量网络图G=(V,E,C),其中每条边的容量都为1.

【符号设置】

  • G=(V,E,C)流量网络图,如图6;
  • vs 发点;
  • vt 汇点;
  • x1,…,x5,y1,…,y5,网络中间点;
  • Cij  边(i,j)的容量限制,且cij=1,(i,j)∈E;
  • xij 边(i,j)的实际流量,且只取0-1;

【数学模型】

【模型求解】

  编写Lingo程序,计算得到最大匹配为4,具体安排反映在图6上,见图7.

sets:
dian/vs x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 vt/:;
bian(dian,dian)/vs,x1 vs,x2 vs,x3 vs,x4 vs,x5 
x1,y1 x1,y2 x1,y3 x2,y1 x2,y4 x3,y4 x3,y5 x4,y5
x5,y4 x5,y5 y1,vt y2,vt y3,vt y4,vt y5,vt/:x,c;
endsets
data:
c=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;
enddata
n=@size(dian);
max=@sum(bian(i,j)|i#eq#1:x(i,j));
@for(bian:@bin(x));
@for(bian:x<c);
@for(dian(k)|k#ne#1#and#k#ne#n:@sum(bian(i,k):x(i,k))=@sum(bian(k,j):x(k,j))); 

相关文章
|
11月前
|
存储 安全 区块链
区块链在房地产交易中的应用:革新房产市场的未来
区块链在房地产交易中的应用:革新房产市场的未来
828 80
|
SQL 关系型数据库 MySQL
MySQL执行SQL文件出现【Unknown collation ‘utf8mb4_0900_ai_ci‘】的解决方案
MySQL执行SQL文件出现【Unknown collation ‘utf8mb4_0900_ai_ci‘】的解决方案
MySQL执行SQL文件出现【Unknown collation ‘utf8mb4_0900_ai_ci‘】的解决方案
|
11月前
|
存储 人工智能 芯片
面向AI的服务器计算互连的创新探索
面向AI的服务器计算互连创新探索主要涵盖三个方向:Scale UP互连、AI高性能网卡及CIPU技术。Scale UP互连通过ALink系统实现极致性能,支持大规模模型训练,满足智算集群需求。AI高性能网卡针对大规模GPU通信和存储挑战,自研EIC网卡提供400G带宽和RDMA卸载加速,优化网络传输。CIPU作为云基础设施核心,支持虚拟化、存储与网络资源池化,提升资源利用率和稳定性,未来将扩展至2*800G带宽,全面覆盖阿里云业务需求。这些技术共同推动了AI计算的高效互联与性能突破。
|
供应链 监控 搜索推荐
ERP系统中的供应商管理与供应商绩效评估解析
【7月更文挑战第25天】 ERP系统中的供应商管理与供应商绩效评估解析
706 1
|
算法 Java Go
非启发式算法——旅行商问题(TSP)及其解决算法
非启发式算法——旅行商问题(TSP)及其解决算法
1318 0
数学建模——最大流问题(配合例子说明)(一)
数学建模——最大流问题(配合例子说明)
585 0
|
Java 数据库连接 数据库
CodeGenerator——SpringBoot整合MyBatisPlus代码生成器
CodeGenerator——SpringBoot整合MyBatisPlus代码生成器
2426 0
|
机器学习/深度学习
旅行商(TSP)问题建模和子路径(subtour)消除约束详解
旅行商(TSP)问题建模和子路径(subtour)消除约束详解
旅行商(TSP)问题建模和子路径(subtour)消除约束详解
|
数据挖掘
插值应用案例1
插值应用案例1
262 0