Rust 基础入门 —— 2.3.所有权和借用

简介: 写在前面的序言因为我们这里实际讲述的内容是关于 内存安全的,所以我们最好先复习一下内存的知识。

Rust 的最主要光芒: 内存安全 。


实现方式: 所有权系统。


写在前面的序言

因为我们这里实际讲述的内容是关于 内存安全的,所以我们最好先复习一下内存的知识。


然后我们,需要理解的就只有所有权概念,以及为了开发便利,进一步引出的引用借用概念。


永远的基础,内存管理

内存作为存储程序运行时数据的地方,是任何地方都避不开的。除非发展到量子计算,脱离了传统的二进制计算架构。


在这里先说明一下内存讨论的主体颗粒度。我们将着眼于 栈(stack) 和 堆 (heap)。重点明晰的是保存的位置是这两者中的哪一种。


栈按照顺序存储值并以相反顺序取出值,这也被称作后进先出。想象一下一叠盘子:当增加更多盘子时,把它们放在盘子堆的顶部,当需要盘子时,再从顶部拿走。不能从中间也不能从底部增加或拿走盘子!


增加数据叫做进栈,移出数据则叫做出栈。


因为上述的实现方式,栈中的所有数据都必须占用已知且固定大小的内存空间,假设数据大小是未知的,那么在取出数据时,你将无法取到你想要的数据。


与栈不同,对于大小未知或者可能变化的数据,我们需要将它存储在堆上。


当向堆上放入数据时,需要请求一定大小的内存空间。操作系统在堆的某处找到一块足够大的空位,把它标记为已使用,并返回一个表示该位置地址的指针, 该过程被称为在堆上分配内存,有时简称为 “分配”(allocating)。


接着,该指针会被推入栈中,因为指针的大小是已知且固定的,在后续使用过程中,你将通过栈中的指针,来获取数据在堆上的实际内存位置,进而访问该数据。


由上可知,堆是一种缺乏组织的数据结构。想象一下去餐馆就座吃饭: 进入餐馆,告知服务员有几个人,然后服务员找到一个够大的空桌子(堆上分配的内存空间)并领你们过去。如果有人来迟了,他们也可以通过桌号(栈上的指针)来找到你们坐在哪。


性能区别

写入方面:入栈比在堆上分配内存要快,因为入栈时操作系统无需分配新的空间,只需要将新数据放入栈顶即可。相比之下,在堆上分配内存则需要更多的工作,这是因为操作系统必须首先找到一块足够存放数据的内存空间,接着做一些记录为下一次分配做准备。


读取方面:得益于 CPU 高速缓存,使得处理器可以减少对内存的访问,高速缓存和内存的访问速度差异在 10 倍以上!栈数据往往可以直接存储在 CPU 高速缓存中,而堆数据只能存储在内存中。访问堆上的数据比访问栈上的数据慢,因为必须先访问栈再通过栈上的指针来访问内存。


因此,处理器处理分配在栈上数据会比在堆上的数据更加高效。


所有权和堆栈

所谓的所有权,他存在的意义就是通过某种逻辑实现对堆上数据的管理。


接下来,让我们详细的介绍所有权对内存管理的具体逻辑。


所有权原则

让我们首先明确规则,再去详细了解内涵


Rust 中每一个值都被一个变量所拥有,该变量被称为值的所有者

一个值同时只能被一个变量所拥有,或者说一个值只能拥有一个所有者

当所有者(变量)离开作用域范围时,这个值将被丢弃(drop)

那么什么是 变量的作用域呢?


变量的作用域

同 c++ 类似,作用域是变量合法有效的范围,

从变量的创建开始有效,止于它离开作用域为止。代码说明如下:


{                   // s 在这里无效,它尚未声明
    let s = "zry";  // s 在这里无效,它尚未声明
    // code 
    ....
}                   // s 在这里无效,它尚未声明


堆上数据和 栈上数据

在这里我们会通过 代码来介绍在 rust 中 什么数据会在堆上,什么数据会在栈上。


我们使用 String类型进行介绍。


先继续使用上面的代码 let s = "zry" 这里的s 是被编译器 硬编码进程序里的字符串值,类型是 &str。但是它有一些缺陷。如下:

- 字符串字面值是不可变的,因为被硬编码到程序代码中。

- 并非所有字符串的值都能在编写代码时得知。

- 例如:获取用户输入的数据时,编译器肯定是不能在编译时预先知道这部分内容应当怎么写的。

所以,Rust 提供了 动态字符串类型:String。这个类型被分配到堆上,当出现需要再扩充空间或者缩小时,都可以很方便实现。


具体的创建方式如下:


let s = String::from("zry");

// `::` 是一种调用操作符,这里表示调用 `String` 中的 `from` 方法,因为 `String` 存储在堆上是动态的,你可以这样修改它:


s.push_str("say hello, world!"); // push_str() 在字符串后追加字面值 println!("{}", s); // 将打印 `zry say hello, world!`


到此,我们知道怎样在堆上创建数据(String)和栈上创建数据 (&str)


接下来,我们将根据这两点 展开讲述 所有权的交互。


所有权的交互

所有权的交互分为三种:


转移所有权,A的给了B,B能用,A不能用

克隆所有权(深拷贝):B抄了A的,多了一份数据,A和B各自使用各自的。

拷贝所有权(浅拷贝):B知道A有,共用一份数据,A和B使用同一份内容。

所有权是对堆上数据的管理权限。先看栈上数据的代码:


let x = 5;
let y = x;


代码背后的逻辑很简单, 将 5 绑定到变量 x;接着拷贝 x 的值赋给 y,最终 x 和 y 都等于 5,因为整数是 Rust 基本数据类型,是固定大小的简单值,因此这两个值都是通过自动拷贝的方式来赋值的,都被存在栈中,完全无需在堆上分配内存


我们在前面就讨论过,拷贝是一个应当重视的行为,那么:这里使用拷贝有什么问题吗?


实际上,我们重视拷贝的原因是因为拷贝需要增加空间,保护数据,消耗时间。在规模变得足够大的时候,就会造成性能浪费。


而这种栈上操作的数据足够的简单,拷贝这个行为也只是需要复制一个整数大小(i32,4个字节)的内存即可,因此在这种情况下,拷贝的速度远快于堆上创建内存,而内容也足够小,不会造成性能浪费。


实际上 Rust 的基本类型都是通过自动拷贝的方式来赋值的


接下来详细介绍:


转移所有权

从基础类型赋值之后,我们使用String类型完成这一节的演示。

首先代码如下:


let s1 = String::from("zry");
let s2 = s1;


这里 String并不是基础类型,rust只对基础类型进行自动拷贝


String类型数据是存放在堆上的,它本身是一个复合类型,你可以把它简单抽象是一个结构体来方便理解。它提供了三部分:存储在栈中的堆指针、字符串长度、字符串容量共同组成,其中的堆指针是根本,字符串长度、字符串容量是为了性能考量的辅助优化。


堆指针指向了真实存储字符串内容的堆内存,

字符串容量是堆内存分配空间的大小

字符串长度是目前已经使用的大小。

回到代码中来,继续讨论 let s2 = s1;的这一步:

分成两种情况讨论:


拷贝 String 和存储在堆上的字节数组 如果该语句是拷贝所有数据(深拷贝),那么无论是 String 本身还是底层的堆上数据,都会被全部拷贝,这对于性能而言会造成非常大的影响


只拷贝 String 本身 这样的拷贝非常快,因为在 64 位机器上就拷贝了 8字节的指针、8字节的长度、8字节的容量,总计 24 字节,但是带来了新的问题,还记得我们之前提到的所有权规则吧?其中有一条就是:一个值只允许有一个所有者,而现在这个值(堆上的真实字符串数据)有了两个所有者:s1 和 s2。


好吧,就假定一个值可以拥有两个所有者,会发生什么呢?


当变量离开作用域后,Rust 会自动调用 drop 函数并清理变量的堆内存。不过由于两个 String 变量指向了同一位置。这就有了一个问题:当 s1 和 s2 离开作用域,它们都会尝试释放相同的内存。这是一个叫做 二次释放(double free) 的错误,也是之前提到过的内存安全性 BUG 之一。两次释放(相同)内存会导致内存污染,它可能会导致潜在的安全漏洞。


因此,Rust 这样解决问题:当 s1 赋予 s2 后,Rust 认为 s1 不再有效,因此也无需在 s1 离开作用域后 drop 任何东西,这就是把所有权从 s1 转移给了 s2,s1 在被赋予 s2 后就马上失效了。


再来看看,在所有权转移后再来使用旧的所有者,会发生什么:


let s1 = String::from("zry");
let s2 = s1;
println!("{} sqy hello world!", s1);


由于 Rust 禁止你使用无效的引用,你会看到以下的错误:


error[E0382]: use of moved value: `s1`
 --> src/main.rs:5:28
  |
3 |     let s2 = s1;
  |         -- value moved here
4 |
5 |     println!("{}, world!", s1);
  |                            ^^ value used here after move
  |
  = note: move occurs because `s1` has type `std::string::String`, which does
  not implement the `Copy` trait


现在再回头看看之前的规则,相信大家已经有了更深刻的理解:


Rust 中每一个值都被一个变量所拥有,该变量被称为值的所有者

一个值同时只能被一个变量所拥有,或者说一个值只能拥有一个所有者

当所有者(变量)离开作用域范围时,这个值将被丢弃(drop)

如果你在其他语言中听说过术语 浅拷贝(shallow copy) 和 深拷贝(deep copy),那么拷贝指针、长度和容量而不拷贝数据听起来就像浅拷贝,但是又因为 Rust 同时使第一个变量 s1 无效了,因此这个操作被称为 移动(move),而不是浅拷贝。上面的例子可以解读为 s1 被移动到了 s2 中。那么具体发生了什么,用一张图简单说明:

![[Pasted image 20230815214121.png]]


这样就解决了我们之前的问题,s1 不再指向任何数据,只有 s2 是有效的,当 s2 离开作用域,它就会释放内存。 到此为止,我们也清楚了为什么 Rust 称呼 let a = b 为变量绑定。

绑定的是变量中记录的指针和数据实际地址这两者。


扩展:引用的所有权

再来看一段代码:


fn main() {
    let x: &str = "hello, world";
    let y = x;
    println!("{},{}",x,y);
}


这段代码,大家觉得会否报错?如果参考之前的 String 所有权转移的例子,那这段代码也应该报错才是,但是实际上呢?


这段代码和之前的 String 有一个本质上的区别:在 String 的例子中 s1 持有了通过String::from("hello") 创建的值的所有权,而这个例子中,x 只是引用了存储在二进制中的字符串 "hello, world",并没有持有所有权。


因此 let y = x 中,仅仅是对该引用进行了拷贝,此时 y 和 x 都引用了同一个字符串。如果还不理解也没关系,当学习了下一章节 “引用与借用” 后,大家自然而言就会理解。


克隆所有权

Rust 中是支持深拷贝的,被称之为 克隆所有权。


但是要注意:Rust 永远不会自动创建数据的深拷贝。

所以,如果你发现rust 在进行自动的复制,那么其是浅拷贝(栈上数据的赋值 let x =1; let i=x;),或者是转移所有权(let s::String = “String”; let y = s;)。

克隆所有权的具体方式是使用 clone()这个关键字。示例如下:


let s1 = String::from("zry");
let s2 = s1.clone();
println!("{} > {} ",s1,s2);


当让,我们可以丰富扩展一下,rust 有一个叫做 Ok ERR 的东西,可以这样方便测试:


// 定义一个函数 test_string,返回一个 Result 类型,
// 其中 Ok 部分包含一个字符串,Err 部分包含一个 &'static str 类型的错误信息
fn test_string() -> Result<String, &'static str> { 
    let s = String::from("hello world"); //创建一个包含 "hello world" 的 String 类型变量 s
    let y = s.clone(); //深拷贝 s 的字符串堆。
    println!("{} > {}", s,y);
    Ok(y) //将变量s y 作为 Ok 部分的返回值
}
fn main() { //主函数
    println!("Hello, world!"); //打印 "Hello, world!"
    match test_string() { //使用 match 匹配 test_string 函数的返回值
        Ok(z) => println!("{}", z), //如果返回的是 Ok,则将字符串 z 打印出来
        Err(e) => eprintln!("Error: {}", e), //如果返回的是 Err,则将错误信息 e 打印出来
    }
}


执行结果:


PS ...\ZryCode\CODE\Rust\file23_08_21> cargo run 
   Compiling file23_08_21 v0.1.0 (...\ZryCode\CODE\Rust\file23_08_21)
    Finished dev [unoptimized + debuginfo] target(s) in 0.60s
     Running `target\debug\file23_08_21.exe`
Hello, world!
hello world > hello world
hello world


注意事项:深拷贝性能消耗是要大于其他方式的。因此,对于热点路径(执行比较频繁的代码),使用 clone会极大的降低程序性能。

拷贝所有权

在上面我们说到了拷贝所有权,这里详细介绍。


拷贝所有权,是指浅拷贝。

浅拷贝只发生在栈上。因此性能很高

通过代码介绍:


let x = 5;
let y = x;
println!("x = {} ,y = {}",x,y);


上面的代码中,我们并没有进行 clone,如果按照之前的说法:所有权改变了以后,原有变量不再使用,这里x,应当不能使用了,但是实际运行之后,依旧打印出了x的内容。

这里引出 rust 中的 一个特征:Copy


整型这样的基本类型是在编译时已知大小的,会被存储在栈上。Rust 通过copy这样的特征来保证拥有这样特征的类型,可以实现:一个旧的变量在被赋值给其他变量后任然可以使用。


哪些类型可 Copy?


任何基本类型的组合都可以Copy,

不需要分配内存或某种形式资源的类型是可以Copy的。

如下是一些 Copy 的类型:


所有整数类型,比如 u32

布尔类型,bool,它的值是 true 和 false

所有浮点数类型,比如 f64

字符类型,char

元组,当且仅当其包含的类型也都是 Copy 的时候。比如,(i32, i32) 是 Copy 的,但 (i32, String) 就不是

不可变引用 &T ,例如 扩展:引用的所有权 中的例子,但是注意: 可变引用 &mut T 是不可以 Copy的

函数传值与返回

既然我们前面说到了:赋值是会改变所有权的。那么自然会聊到一个点:函数传值。


在将值传递给函数时,一样会发生 移动 或者 复制 ,就像赋值一样。具体可以看下面的代码:


// 定义一个函数 test_string,返回一个 Result 类型,
// 其中 Ok 部分包含一个字符串,Err 部分包含一个 &'static str 类型的错误信息
fn test_string() -> Result<String, &'static str> {
    let s = String::from("hello world"); //创建一个包含 "hello world" 的 String 类型变量 s
    let y = s.clone(); //深拷贝 s 的字符串堆。
    println!("{} > {}", s, y);
    Ok(y) //将变量s y 作为 Ok 部分的返回值
}
fn test_string_2() {
    let x = 5;
    let y = x;
    println!("x = {} ,y = {}", x, y);
}
fn takes_ownership(some_string: String) {
    // some_string 进入作用域
    println!("{}", some_string);
} // 这里,some_string 移出作用域并调用 `drop` 方法。占用的内存被释放
fn makes_copy(some_integer: i32) {
    // some_integer 进入作用域
    println!("{}", some_integer);
} // 这里,some_integer 移出作用域。不会有特殊操作
fn main() {
    //主函数
    println!("Hello, world!"); //打印 "Hello, world!"
    match test_string() {
        //使用 match 匹配 test_string 函数的返回值
        Ok(z) => println!("{}", z), //如果返回的是 Ok,则将字符串 z 打印出来
        Err(e) => eprintln!("Error: {}", e), //如果返回的是 Err,则将错误信息 e 打印出来
    }
    test_string_2();
    let s = String::from("hello"); // s 进入作用域
    //-------------------------------------
    takes_ownership(s); // s 的值移动到函数里 ...
                        // ... 所以到这里不再有效
    let x = 5; // x 进入作用域
    makes_copy(x); // x 应该移动函数里,
                   // 但 i32 是 Copy 的,所以在后面可继续使用 x
} // 这里, x 先移出了作用域,然后是 s。但因为 s 的值已被移走,
  // 所以不会有特殊操作


运行后如下结果:


PS ...\ZryCode\CODE\Rust\file23_08_21> cargo run
   Compiling file23_08_21 v0.1.0 (...\ZryCode\CODE\Rust\file23_08_21)
    Finished dev [unoptimized + debuginfo] target(s) in 1.41s
     Running `target\debug\file23_08_21.exe`
Hello, world!
hello world > hello world
hello world
x = 5 ,y = 5
hello


同样的,函数返回值也有所有权,例如:


// 定义一个函数 test_string,返回一个 Result 类型,
// 其中 Ok 部分包含一个字符串,Err 部分包含一个 &'static str 类型的错误信息
fn test_string() -> Result<String, &'static str> {
    let s = String::from("hello world"); //创建一个包含 "hello world" 的 String 类型变量 s
    let y = s.clone(); //深拷贝 s 的字符串堆。
    println!("{} > {}", s, y);
    Ok(y) //将变量s y 作为 Ok 部分的返回值
}
fn test_string_2() {
    let x = 5;
    let y = x;
    println!("x = {} ,y = {}", x, y);
}
fn takes_ownership(some_string: String) {
    // some_string 进入作用域
    println!("{}", some_string);
} // 这里,some_string 移出作用域并调用 `drop` 方法。占用的内存被释放
fn makes_copy(some_integer: i32) {
    // some_integer 进入作用域
    println!("{}", some_integer);
} // 这里,some_integer 移出作用域。不会有特殊操作
fn main() {
    //主函数
    println!("Hello, world!"); //打印 "Hello, world!"
    match test_string() {
        //使用 match 匹配 test_string 函数的返回值
        Ok(z) => println!("{}", z), //如果返回的是 Ok,则将字符串 z 打印出来
        Err(e) => eprintln!("Error: {}", e), //如果返回的是 Err,则将错误信息 e 打印出来
    }
    test_string_2();
    let s = String::from("hello"); // s 进入作用域
    //-------------------------------------
    takes_ownership(s); // s 的值移动到函数里 ...
                        // ... 所以到这里不再有效
    println!("S == {}",s);
    let x = 5; // x 进入作用域
    makes_copy(x); // x 应该移动函数里,
                   // 但 i32 是 Copy 的,所以在后面可继续使用 x
    let s1 = gives_ownership_2(); // gives_ownership_2 将返回值
                                  // 移给 s1
    let s2 = String::from("hello"); // s2 进入作用域
    let s3 = takes_and_gives_back_2(s2); // s2 被移动到
                                         // takes_and_gives_back_2 中,
                                         // 它也将返回值移给 s3
} // 这里, s3 移出作用域并被丢弃。s2 也移出作用域,但已被移走,
  // 所以什么也不会发生。s1 移出作用域并被丢弃
fn gives_ownership_2() -> String {
    // gives_ownership_2 将返回值移动给
    // 调用它的函数
    let some_string = String::from("hello"); // some_string 进入作用域.
    some_string // 返回 some_string 并移出给调用的函数
}
// takes_and_gives_back_2 将传入字符串并返回该值
fn takes_and_gives_back_2(a_string: String) -> String {
    // a_string 进入作用域
    a_string // 返回 a_string 并移出给调用的函数
}


其中如果在变量传入函数后,再次使用变量,就会报错如下:


error[E0382]: borrow of moved value: `s`
  --> src\main.rs:51:24
   |
46 |     let s = String::from("hello"); // s 进入作用域
   |         - move occurs because `s` has type `String`, which does not implement the `Copy` trait
...
49 |     takes_ownership(s); // s 的值移动到函数里 ...
   |                     - value moved here
50 |                         // ... 所以到这里不再有效
51 |     println!("S == {}",s);
   |                        ^ value borrowed here after move
   |


很明显,这样的方式不利于我们开发时使用。

因此 ,我们继续介绍 引用和借用。 所有权很强大,避免了内存的不安全性,但是也带来了一个新麻烦: 总是把一个值传来传去来使用它。 传入一个函数,很可能还要从该函数传出去,结果就是语言表达变得非常啰嗦,幸运的是,Rust 提供了新功能解决这个问题。


贴一个体验不错的学习链接恰饭:学习链接

目录
相关文章
|
2月前
|
存储 Rust
【Rust】——所有权规则、内存分配
【Rust】——所有权规则、内存分配
26 0
|
3月前
|
Rust 安全 编译器
Rust中的生命周期与借用检查器:内存安全的守护神
本文深入探讨了Rust编程语言中生命周期与借用检查器的概念及其工作原理。Rust通过这些机制,在编译时确保了内存安全,避免了数据竞争和悬挂指针等常见问题。我们将详细解释生命周期如何管理数据的存活期,以及借用检查器如何确保数据的独占或共享访问,从而在不牺牲性能的前提下,为开发者提供了强大的内存安全保障。
|
14天前
|
Web App开发 Rust 安全
一名C++程序员的Rust入门初体验
作者最近尝试写了一些Rust代码,本文主要讲述了对Rust的看法和Rust与C++的一些区别。
|
2月前
|
Rust 算法 开发者
【Rust 控制流入门指南】 Introduction to Control Flow in Rust
【Rust 控制流入门指南】 Introduction to Control Flow in Rust
25 0
|
2月前
|
Rust 算法 安全
【Rust中的所有权系统深入解析】A Deep Dive into Rust‘s Ownership System
【Rust中的所有权系统深入解析】A Deep Dive into Rust‘s Ownership System
32 0
|
2月前
|
Rust 编译器
【Rust】——函数(所有权)以及借用或引用
【Rust】——函数(所有权)以及借用或引用
23 0
|
2月前
|
存储 缓存 Rust
【Rust】——所有权:Stack(栈内存)vs Heap(堆内存)(重点)
【Rust】——所有权:Stack(栈内存)vs Heap(堆内存)(重点)
25 0
|
3月前
|
Rust 安全 编译器
深入Rust的所有权系统:理解变量的所有权
本文详细探讨了Rust编程语言中所有权系统的核心概念,包括变量的所有权、生命周期、借用规则和内存安全。通过理解这些概念,我们能够编写出更加高效、安全和可维护的Rust代码。
|
21天前
|
Rust 安全 程序员
|
21天前
|
Rust 安全 程序员
Rust vs Go:解析两者的独特特性和适用场景
在讨论 Rust 与 Go 两种编程语言哪种更优秀时,我们将探讨它们在性能、简易性、安全性、功能、规模和并发处理等方面的比较。同时,我们看看它们有什么共同点和根本的差异。现在就来看看这个友好而公平的对比。