Linux进程概念(2)

简介: Linux进程概念(2)

Linux进程概念(2)

📟作者主页:慢热的陕西人

🌴专栏链接:Linux

📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言

本博客主要内容讲解了进程的概念,PCB,进程的PID,如何创建子进程,程序在调用fork()函数时的运行过程及原理


Ⅰ. 进程:

Ⅰ . Ⅰ进程的概念:

内核关于进程的相关数据结构 + 当前进程的代码和数据;

Ⅰ. Ⅱ描述进程-PCB:

  • 进程信息被放在一个叫做进程控制块的数据结构中,可以理解为进程属性的集合。
  • PCB内部的属性和文件存储在磁盘中的属性是没有太大关系的,是重新生成的。
  • 课本上称之为PCB(process control block), Linux操作系统下的PCB是: task_struct
task_ struct内容分类
  • 标示符: 描述本进程的唯一标示符,用来区别其他进程。
  • 状态: 任务状态,退出代码,退出信号等。
  • 优先级: 相对于其他进程的优先级。
  • 程序计数器: 程序中即将被执行的下一条指令的地址。
  • 内存指针: 包括程序代码和进程相关数据的指针,还有和其他进程共享的内存块的指针。
  • 上下文数据: 进程执行时处理器的寄存器中的数据[休学例子,要加图CPU,寄存器]。
  • I/O状态信息: 包括显示的I/O请求,分配给进程的I/O设备和被进程使用的文件列表。
  • 记账信息: 可能包括处理器时间总和,使用的时钟数总和,时间限制,记账号等。
  • 其他信息。

Ⅰ. Ⅲ为什么进程管理中需要PCB:

1.bash命令行解释器,本质上它也是一个进程;

2.命令行启动的所有程序,最终都会变成进程,而该进程对应的父进程都是bash(如何做到的);

Ⅰ. Ⅳ查看进程:

进程的信息可以通过 /proc 系统文件夹查看

这里显示的就是我们当前操作系统中在运行的进程,那些蓝色的数字就是进程的pid:

当进程存在时,我们可以通过pid来进入文件来查看进程相关的属性:

当我们kill这个进程的时候,当我再次查看pid对应的文件:

大多数进程信息同样可以使用top和ps这些用户级工具来获取

ps aux | gep test | grep -v grep

那我们如何直接获取进程pid呢?这时候我们就需要用到我们接触到的第一个操作系统接口getpid();

getpid():哪个进程去调用它就返回的是哪个进程的pid;

getppid():哪个进程去调用它就返回的是哪个进程的父进程的pid;

我们运行如下的代码:

#include<stdio.h>    
#include<unistd.h>    
#include<sys/types.h>    
int main()    
{              
  while(1)    
  {      
    printf("myprocess: 我已经是一个进程了,我的PID是:%d,我的父进程PID是:%d\n", getpid(), getppid());        
    sleep(1);    
  }                                                                            
}

运行如下的结果:

然后我们反复的去运行然后观察:

我们发现父进程的PID一直没有变化,但是进程PID却在变化。那么这个没有变化的进程是谁呢?是不是我们每次用命令行运行程序的时候都是他来帮我们创建的呢?

接下来我们用ps命令去寻找一下这个进程:

我们发现它是bash,它是我们的命令行解释器,本质上它也是一个进程;

命令行启动的所有的程序,最终都会变成进程,而该进程对应的父进程就是bash;

那么bash是如何创建子进程的呢?

Ⅰ. Ⅴ如何创建子进程:

例如:

#include<stdio.h>
#include<unistd.h>
#include<sys/types.h>
int main()
{     
  pid_t ret = fork();
  if(ret == 0)
  { 
    //子进程
    printf("我是子进程,我的pid是:%d,我的父进程是:%d",getpid(),getppid()); 
    sleep(1);        
  }
  else if(ret > 0)
  {    
    //父进程
    while(1)
    { 
      printf("我是父进程,我的pid是:%d,我的父进程是:%d",getpid(),getppid());
      sleep(2);   
    }                          
  }                                                                                            
  return 0;                                                                                  
}

运行结果:

a.fork之后,执行流会变成2个执行流;

b.fork之后,谁先运行由调度器运行;

c.fork之后,fork之后的代码共享,通常我们通过if 和 ifelse来进行执行流分流;

原理:

  • fork做了什么?:

创建了子进程,只会创建一个子进程对应的pcb,这个pcb内部的大部分内容都是和父进程相同的,并且他们共同指向同一段代码和数据;

  • fork如何看待?
    进程在运行的时候,是具有独立性的;
    父子进程也具有独立性;
    代码:是只读的;
    数据:当有一个执行流尝试修改数据的时候,OS会自动给我们当前的进程触发写时拷贝(操作系统会拷贝一份数据让进程去另一个地方修改,而不会修改原始数据)
  • 如何理解fork();两个返回值?
    对于一个函数来说,函数执行return的时候,函数的主体功能就已经实现了。
    fork函数本质上来说是OS为我们所提供的函数!
    因为当执行完fork函数的主体的时候,主进程被调度和子进程也会被执行所以在fork的函数内部return这段语句被执行了两次所以返回了两个返回值

到这本篇博客的内容就到此结束了。
如果觉得本篇博客内容对你有所帮助的话,可以点赞,收藏,顺便关注一下!
如果文章内容有错误,欢迎在评论区指正

相关文章
|
11天前
|
Linux Shell
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
32 5
|
11天前
|
Linux 应用服务中间件 nginx
Linux 进程管理基础
Linux 进程是操作系统中运行程序的实例,彼此隔离以确保安全性和稳定性。常用命令查看和管理进程:`ps` 显示当前终端会话相关进程;`ps aux` 和 `ps -ef` 显示所有进程信息;`ps -u username` 查看特定用户进程;`ps -e | grep &lt;进程名&gt;` 查找特定进程;`ps -p &lt;PID&gt;` 查看指定 PID 的进程详情。终止进程可用 `kill &lt;PID&gt;` 或 `pkill &lt;进程名&gt;`,强制终止加 `-9` 选项。
20 3
|
11天前
|
存储 算法 数据处理
进程基础:概念、状态与生命周期
进程是操作系统进行资源分配和调度的基本单位,由程序段、数据段和进程控制块(PCB)组成。线程是进程中更小的执行单元,能独立运行且共享进程资源,具有轻量级和并发性特点。进程状态包括就绪、运行和阻塞,其生命周期分为创建、就绪、运行、阻塞和终止阶段。
50 2
|
12天前
|
Linux
Linux:守护进程(进程组、会话和守护进程)
守护进程在 Linux 系统中扮演着重要角色,通过后台执行关键任务和服务,确保系统的稳定运行。理解进程组和会话的概念,是正确创建和管理守护进程的基础。使用现代的 `systemd` 或传统的 `init.d` 方法,可以有效地管理守护进程,提升系统的可靠性和可维护性。希望本文能帮助读者深入理解并掌握 Linux 守护进程的相关知识。
27 7
|
17天前
|
存储 Linux API
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
在计算机系统的底层架构中,操作系统肩负着资源管理与任务调度的重任。当我们启动各类应用程序时,其背后复杂的运作机制便悄然展开。程序,作为静态的指令集合,如何在系统中实现动态执行?本文带你一探究竟!
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
|
1月前
|
存储 网络协议 Linux
【Linux】进程IO|系统调用|open|write|文件描述符fd|封装|理解一切皆文件
本文详细介绍了Linux中的进程IO与系统调用,包括 `open`、`write`、`read`和 `close`函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。
77 34
|
1月前
|
消息中间件 Linux C++
c++ linux通过实现独立进程之间的通信和传递字符串 demo
的进程间通信机制,适用于父子进程之间的数据传输。希望本文能帮助您更好地理解和应用Linux管道,提升开发效率。 在实际开发中,除了管道,还可以根据具体需求选择消息队列、共享内存、套接字等其他进程间通信方
68 16
|
2月前
|
消息中间件 Linux
Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。
185 20
|
3月前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
138 13
|
3月前
|
SQL 运维 监控
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具