三、epoll内核源码详解
网上很多博客说epoll使用了共享内存,这个是完全错误的 ,可以阅读源码,会发现完全没有使用共享内存的任何api,而是 使用了copy_from_user跟__put_user进行内核跟用户虚拟空间数据交互。
/* * fs/eventpoll.c (Efficient event retrieval implementation) * Copyright (C) 2001,...,2009 Davide Libenzi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Davide Libenzi <davidel@xmailserver.org> * */ /* * 在深入了解epoll的实现之前, 先来了解内核的3个方面. * 1. 等待队列 waitqueue * 我们简单解释一下等待队列: * 队列头(wait_queue_head_t)往往是资源生产者, * 队列成员(wait_queue_t)往往是资源消费者, * 当头的资源ready后, 会逐个执行每个成员指定的回调函数, * 来通知它们资源已经ready了, 等待队列大致就这个意思. * 2. 内核的poll机制 * 被Poll的fd, 必须在实现上支持内核的Poll技术, * 比如fd是某个字符设备,或者是个socket, 它必须实现 * file_operations中的poll操作, 给自己分配有一个等待队列头. * 主动poll fd的某个进程必须分配一个等待队列成员, 添加到 * fd的对待队列里面去, 并指定资源ready时的回调函数. * 用socket做例子, 它必须有实现一个poll操作, 这个Poll是 * 发起轮询的代码必须主动调用的, 该函数中必须调用poll_wait(), * poll_wait会将发起者作为等待队列成员加入到socket的等待队列中去. * 这样socket发生状态变化时可以通过队列头逐个通知所有关心它的进程. * 这一点必须很清楚的理解, 否则会想不明白epoll是如何 * 得知fd的状态发生变化的. * 3. epollfd本身也是个fd, 所以它本身也可以被epoll, * 可以猜测一下它是不是可以无限嵌套epoll下去... * * epoll基本上就是使用了上面的1,2点来完成. * 可见epoll本身并没有给内核引入什么特别复杂或者高深的技术, * 只不过是已有功能的重新组合, 达到了超过select的效果. */ /* * 相关的其它内核知识: * 1. fd我们知道是文件描述符, 在内核态, 与之对应的是struct file结构, * 可以看作是内核态的文件描述符. * 2. spinlock, 自旋锁, 必须要非常小心使用的锁, * 尤其是调用spin_lock_irqsave()的时候, 中断关闭, 不会发生进程调度, * 被保护的资源其它CPU也无法访问. 这个锁是很强力的, 所以只能锁一些 * 非常轻量级的操作. * 3. 引用计数在内核中是非常重要的概念, * 内核代码里面经常有些release, free释放资源的函数几乎不加任何锁, * 这是因为这些函数往往是在对象的引用计数变成0时被调用, * 既然没有进程在使用在这些对象, 自然也不需要加锁. * struct file 是持有引用计数的. */ /* --- epoll相关的数据结构 --- */ /* * This structure is stored inside the "private_data" member of the file * structure and rapresent the main data sructure for the eventpoll * interface. */ /* 每创建一个epollfd, 内核就会分配一个eventpoll与之对应, 可以说是 * 内核态的epollfd. */ struct eventpoll { /* Protect the this structure access */ spinlock_t lock; /* * This mutex is used to ensure that files are not removed * while epoll is using them. This is held during the event * collection loop, the file cleanup path, the epoll file exit * code and the ctl operations. */ /* 添加, 修改或者删除监听fd的时候, 以及epoll_wait返回, 向用户空间 * 传递数据时都会持有这个互斥锁, 所以在用户空间可以放心的在多个线程 * 中同时执行epoll相关的操作, 内核级已经做了保护. */ struct mutex mtx; /* Wait queue used by sys_epoll_wait() */ /* 调用epoll_wait()时, 我们就是"睡"在了这个等待队列上... */ wait_queue_head_t wq; /* Wait queue used by file->poll() */ /* 这个用于epollfd本事被poll的时候... */ wait_queue_head_t poll_wait; /* List of ready file descriptors */ /* 所有已经ready的epitem都在这个链表里面 */ struct list_head rdllist; /* RB tree root used to store monitored fd structs */ /* 所有要监听的epitem都在这里 */ struct rb_root rbr; /* 这是一个单链表链接着所有的struct epitem当event转移到用户空间时 */ * This is a single linked list that chains all the "struct epitem" that * happened while transfering ready events to userspace w/out * holding ->lock. */ struct epitem *ovflist; /* The user that created the eventpoll descriptor */ /* 这里保存了一些用户变量, 比如fd监听数量的最大值等等 */ struct user_struct *user; }; /* * Each file descriptor added to the eventpoll interface will * have an entry of this type linked to the "rbr" RB tree. */ /* epitem 表示一个被监听的fd */ struct epitem { /* RB tree node used to link this structure to the eventpoll RB tree */ /* rb_node, 当使用epoll_ctl()将一批fds加入到某个epollfd时, 内核会分配 * 一批的epitem与fds们对应, 而且它们以rb_tree的形式组织起来, tree的root * 保存在epollfd, 也就是struct eventpoll中. * 在这里使用rb_tree的原因我认为是提高查找,插入以及删除的速度. * rb_tree对以上3个操作都具有O(lgN)的时间复杂度 */ struct rb_node rbn; /* List header used to link this structure to the eventpoll ready list */ /* 链表节点, 所有已经ready的epitem都会被链到eventpoll的rdllist中 */ struct list_head rdllink; /* * Works together "struct eventpoll"->ovflist in keeping the * single linked chain of items. */ /* 这个在代码中再解释... */ struct epitem *next; /* The file descriptor information this item refers to */ /* epitem对应的fd和struct file */ struct epoll_filefd ffd; /* Number of active wait queue attached to poll operations */ int nwait; /* List containing poll wait queues */ struct list_head pwqlist; /* The "container" of this item */ /* 当前epitem属于哪个eventpoll */ struct eventpoll *ep; /* List header used to link this item to the "struct file" items list */ struct list_head fllink; /* The structure that describe the interested events and the source fd */ /* 当前的epitem关系哪些events, 这个数据是调用epoll_ctl时从用户态传递过来 */ struct epoll_event event; }; struct epoll_filefd { struct file *file; int fd; }; /* poll所用到的钩子Wait structure used by the poll hooks */ struct eppoll_entry { /* List header used to link this structure to the "struct epitem" */ struct list_head llink; /* The "base" pointer is set to the container "struct epitem" */ struct epitem *base; /* * Wait queue item that will be linked to the target file wait * queue head. */ wait_queue_t wait; /* The wait queue head that linked the "wait" wait queue item */ wait_queue_head_t *whead; }; /* Wrapper struct used by poll queueing */ struct ep_pqueue { poll_table pt; struct epitem *epi; }; /* Used by the ep_send_events() function as callback private data */ struct ep_send_events_data { int maxevents; struct epoll_event __user *events; }; /* --- 代码注释 --- */ /* 你没看错, 这就是epoll_create()的真身, 基本啥也不干直接调用epoll_create1了, * 另外你也可以发现, size这个参数其实是没有任何用处的... */ SYSCALL_DEFINE1(epoll_create, int, size) { if (size <= 0) return -EINVAL; return sys_epoll_create1(0); } /* 这才是真正的epoll_create啊~~ */ SYSCALL_DEFINE1(epoll_create1, int, flags) { int error; struct eventpoll *ep = NULL;//主描述符 /* Check the EPOLL_* constant for consistency. */ /* 这句没啥用处... */ BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); /* 对于epoll来讲, 目前唯一有效的FLAG就是CLOEXEC */ if (flags & ~EPOLL_CLOEXEC) return -EINVAL; /* * Create the internal data structure ("struct eventpoll"). */ /* 分配一个struct eventpoll, 分配和初始化细节我们随后深聊~ */ error = ep_alloc(&ep); if (error < 0) return error; /* * Creates all the items needed to setup an eventpoll file. That is, * a file structure and a free file descriptor. */ /* 这里是创建一个匿名fd, 说起来就话长了...长话短说: * epollfd本身并不存在一个真正的文件与之对应, 所以内核需要创建一个 * "虚拟"的文件, 并为之分配真正的struct file结构, 而且有真正的fd. * 这里2个参数比较关键: * eventpoll_fops, fops就是file operations, 就是当你对这个文件(这里是虚拟的)进行操作(比如读)时, * fops里面的函数指针指向真正的操作实现, 类似C++里面虚函数和子类的概念. * epoll只实现了poll和release(就是close)操作, 其它文件系统操作都有VFS全权处理了. * ep, ep就是struct epollevent, 它会作为一个私有数据保存在struct file的private指针里面. * 其实说白了, 就是为了能通过fd找到struct file, 通过struct file能找到eventpoll结构. * 如果懂一点Linux下字符设备驱动开发, 这里应该是很好理解的, * 推荐阅读 <Linux device driver 3rd> */ error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep, O_RDWR | (flags & O_CLOEXEC)); if (error < 0) ep_free(ep); return error; } /* * 创建好epollfd后, 接下来我们要往里面添加fd咯 * 来看epoll_ctl * epfd 就是epollfd * op ADD,MOD,DEL * fd 需要监听的描述符 * event 我们关心的events */ SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, struct epoll_event __user *, event) { int error; struct file *file, *tfile; struct eventpoll *ep; struct epitem *epi; struct epoll_event epds; error = -EFAULT; /* * 错误处理以及从用户空间将epoll_event结构copy到内核空间. */ if (ep_op_has_event(op) && copy_from_user(&epds, event, sizeof(struct epoll_event))) goto error_return; /* Get the "struct file *" for the eventpoll file */ /* 取得struct file结构, epfd既然是真正的fd, 那么内核空间 * 就会有与之对于的一个struct file结构 * 这个结构在epoll_create1()中, 由函数anon_inode_getfd()分配 */ error = -EBADF; file = fget(epfd); if (!file) goto error_return; /* Get the "struct file *" for the target file */ /* 我们需要监听的fd, 它当然也有个struct file结构, 上下2个不要搞混了哦 */ tfile = fget(fd); if (!tfile) goto error_fput; /* The target file descriptor must support poll */ error = -EPERM; /* 如果监听的文件不支持poll, 那就没辙了. * 你知道什么情况下, 文件会不支持poll吗? */ if (!tfile->f_op || !tfile->f_op->poll) goto error_tgt_fput; /* * We have to check that the file structure underneath the file descriptor * the user passed to us _is_ an eventpoll file. And also we do not permit * adding an epoll file descriptor inside itself. */ error = -EINVAL; /* epoll不能自己监听自己... */ if (file == tfile || !is_file_epoll(file)) goto error_tgt_fput; /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ /* 取到我们的eventpoll结构, 来自与epoll_create1()中的分配 */ ep = file->private_data; /* 接下来的操作有可能修改数据结构内容, 锁之~ */ mutex_lock(&ep->mtx); /* * Try to lookup the file inside our RB tree, Since we grabbed "mtx" * above, we can be sure to be able to use the item looked up by * ep_find() till we release the mutex. */ /* 对于每一个监听的fd, 内核都有分配一个epitem结构, * 而且我们也知道, epoll是不允许重复添加fd的, * 所以我们首先查找该fd是不是已经存在了. * ep_find()其实就是RBTREE查找, 跟C++STL的map差不多一回事, O(lgn)的时间复杂度. */ epi = ep_find(ep, tfile, fd); error = -EINVAL; switch (op) { /* 首先我们关心添加 */ case EPOLL_CTL_ADD: if (!epi) { /* 之前的find没有找到有效的epitem, 证明是第一次插入, 接受! * 这里我们可以知道, POLLERR和POLLHUP事件内核总是会关心的 * */ epds.events |= POLLERR | POLLHUP; /* rbtree插入, 详情见ep_insert()的分析 * 其实我觉得这里有insert的话, 之前的find应该 * 是可以省掉的... */ error = ep_insert(ep, &epds, tfile, fd); } else /* 找到了!? 重复添加! */ error = -EEXIST; break; /* 删除和修改操作都比较简单 */ case EPOLL_CTL_DEL: if (epi) error = ep_remove(ep, epi); else error = -ENOENT; break; case EPOLL_CTL_MOD: if (epi) { epds.events |= POLLERR | POLLHUP; error = ep_modify(ep, epi, &epds); } else error = -ENOENT; break; } mutex_unlock(&ep->mtx); error_tgt_fput: fput(tfile); error_fput: fput(file); error_return: return error; } /* 分配一个eventpoll结构 */ static int ep_alloc(struct eventpoll **pep) { int error; struct user_struct *user; struct eventpoll *ep; /* 获取当前用户的一些信息, 比如是不是root啦, 最大监听fd数目啦 */ user = get_current_user(); error = -ENOMEM; ep = kzalloc(sizeof(*ep), GFP_KERNEL); if (unlikely(!ep)) goto free_uid; /* 这些都是初始化啦 */ spin_lock_init(&ep->lock); mutex_init(&ep->mtx); init_waitqueue_head(&ep->wq);//初始化自己睡在的等待队列 init_waitqueue_head(&ep->poll_wait);//初始化 INIT_LIST_HEAD(&ep->rdllist);//初始化就绪链表 ep->rbr = RB_ROOT; ep->ovflist = EP_UNACTIVE_PTR; ep->user = user; *pep = ep; return 0; free_uid: free_uid(user); return error; } /* * Must be called with "mtx" held. */ /* * ep_insert()在epoll_ctl()中被调用, 完成往epollfd里面添加一个监听fd的工作 * tfile是fd在内核态的struct file结构 */ static int ep_insert(struct eventpoll *ep, struct epoll_event *event, struct file *tfile, int fd) { int error, revents, pwake = 0; unsigned long flags; struct epitem *epi; struct ep_pqueue epq; /* 查看是否达到当前用户的最大监听数 */ if (unlikely(atomic_read(&ep->user->epoll_watches) >= max_user_watches)) return -ENOSPC; /* 从著名的slab中分配一个epitem */ if (!(epi = kmem_***_alloc(epi_***, GFP_KERNEL))) return -ENOMEM; /* Item initialization follow here ... */ /* 这些都是相关成员的初始化... */ INIT_LIST_HEAD(&epi->rdllink); INIT_LIST_HEAD(&epi->fllink); INIT_LIST_HEAD(&epi->pwqlist); epi->ep = ep; /* 这里保存了我们需要监听的文件fd和它的file结构 */ ep_set_ffd(&epi->ffd, tfile, fd); epi->event = *event; epi->nwait = 0; /* 这个指针的初值不是NULL哦... */ epi->next = EP_UNACTIVE_PTR; /* Initialize the poll table using the queue callback */ /* 好, 我们终于要进入到poll的正题了 */ epq.epi = epi; /* 初始化一个poll_table * 其实就是指定调用poll_wait(注意不是epoll_wait!!!)时的回调函数,和我们关心哪些events, * ep_ptable_queue_proc()就是我们的回调啦, 初值是所有event都关心 */ init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); /* * Attach the item to the poll hooks and get current event bits. * We can safely use the file* here because its usage count has * been increased by the caller of this function. Note that after * this operation completes, the poll callback can start hitting * the new item. */ /* 这一部很关键, 也比较难懂, 完全是内核的poll机制导致的... * 首先, f_op->poll()一般来说只是个wrapper, 它会调用真正的poll实现, * 拿UDP的socket来举例, 这里就是这样的调用流程: f_op->poll(), sock_poll(), * udp_poll(), datagram_poll(), sock_poll_wait(), 最后调用到我们上面指定的 * ep_ptable_queue_proc()这个回调函数...(好深的调用路径...). * 完成这一步, 我们的epitem就跟这个socket关联起来了, 当它有状态变化时, * 会通过ep_poll_callback()来通知. * 最后, 这个函数还会查询当前的fd是不是已经有啥event已经ready了, 有的话 * 会将event返回. */ revents = tfile->f_op->poll(tfile, &epq.pt); /* * We have to check if something went wrong during the poll wait queue * install process. Namely an allocation for a wait queue failed due * high memory pressure. */ error = -ENOMEM; if (epi->nwait < 0) goto error_unregister; /* Add the current item to the list of active epoll hook for this file */ /* 这个就是每个文件会将所有监听自己的epitem链起来 */ spin_lock(&tfile->f_lock); list_add_tail(&epi->fllink, &tfile->f_ep_links); spin_unlock(&tfile->f_lock); /* * Add the current item to the RB tree. All RB tree operations are * protected by "mtx", and ep_insert() is called with "mtx" held. */ /* 都搞定后, 将epitem插入到对应的eventpoll中去 */ ep_rbtree_insert(ep, epi); /* We have to drop the new item inside our item list to keep track of it */ spin_lock_irqsave(&ep->lock, flags); /* If the file is already "ready" we drop it inside the ready list */ /* 到达这里后, 如果我们监听的fd已经有事件发生, 那就要处理一下 */ if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { /* 将当前的epitem加入到ready list中去 */ list_add_tail(&epi->rdllink, &ep->rdllist); /* Notify waiting tasks that events are available */ /* 谁在epoll_wait, 就唤醒它... */ if (waitqueue_active(&ep->wq)) wake_up_locked(&ep->wq); /* 谁在epoll当前的epollfd, 也唤醒它... */ if (waitqueue_active(&ep->poll_wait)) pwake++; } spin_unlock_irqrestore(&ep->lock, flags); atomic_inc(&ep->user->epoll_watches); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&ep->poll_wait); return 0; error_unregister: ep_unregister_pollwait(ep, epi); /* * We need to do this because an event could have been arrived on some * allocated wait queue. Note that we don't care about the ep->ovflist * list, since that is used/cleaned only inside a section bound by "mtx". * And ep_insert() is called with "mtx" held. */ spin_lock_irqsave(&ep->lock, flags); if (ep_is_linked(&epi->rdllink)) list_del_init(&epi->rdllink); spin_unlock_irqrestore(&ep->lock, flags); kmem_***_free(epi_***, epi); return error; } /* * This is the callback that is used to add our wait queue to the * target file wakeup lists. */ /* * 该函数在调用f_op->poll()时会被调用. * 也就是epoll主动poll某个fd时, 用来将epitem与指定的fd关联起来的. * 关联的办法就是使用等待队列(waitqueue) */ static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, poll_table *pt) { struct epitem *epi = ep_item_from_epqueue(pt); struct eppoll_entry *pwq; if (epi->nwait >= 0 && (pwq = kmem_***_alloc(pwq_***, GFP_KERNEL))) { /* 初始化等待队列, 指定ep_poll_callback为唤醒时的回调函数, * 当我们监听的fd发生状态改变时, 也就是队列头被唤醒时, * 指定的回调函数将会被调用. */ init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); pwq->whead = whead; pwq->base = epi; /* 将刚分配的等待队列成员加入到头中, 头是由fd持有的 */ add_wait_queue(whead, &pwq->wait); list_add_tail(&pwq->llink, &epi->pwqlist); /* nwait记录了当前epitem加入到了多少个等待队列中, * 我认为这个值最大也只会是1... */ epi->nwait++; } else { /* We have to signal that an error occurred */ epi->nwait = -1; } } /* * This is the callback that is passed to the wait queue wakeup * machanism. It is called by the stored file descriptors when they * have events to report. */ /* * 这个是关键性的回调函数, 当我们监听的fd发生状态改变时, 它会被调用. * 参数key被当作一个unsigned long整数使用, 携带的是events. */ static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) { int pwake = 0; unsigned long flags; struct epitem *epi = ep_item_from_wait(wait);//从等待队列获取epitem.需要知道哪个进程挂载到这个设备 struct eventpoll *ep = epi->ep;//获取 spin_lock_irqsave(&ep->lock, flags); /* * If the event mask does not contain any poll(2) event, we consider the * descriptor to be disabled. This condition is likely the effect of the * EPOLLONESHOT bit that disables the descriptor when an event is received, * until the next EPOLL_CTL_MOD will be issued. */ if (!(epi->event.events & ~EP_PRIVATE_BITS)) goto out_unlock; /* * Check the events coming with the callback. At this stage, not * every device reports the events in the "key" parameter of the * callback. We need to be able to handle both cases here, hence the * test for "key" != NULL before the event match test. */ /* 没有我们关心的event... */ if (key && !((unsigned long) key & epi->event.events)) goto out_unlock; /* * If we are trasfering events to userspace, we can hold no locks * (because we're accessing user memory, and because of linux f_op->poll() * semantics). All the events that happens during that period of time are * chained in ep->ovflist and requeued later on. */ /* * 这里看起来可能有点费解, 其实干的事情比较简单: * 如果该callback被调用的同时, epoll_wait()已经返回了, * 也就是说, 此刻应用程序有可能已经在循环获取events, * 这种情况下, 内核将此刻发生event的epitem用一个单独的链表 * 链起来, 不发给应用程序, 也不丢弃, 而是在下一次epoll_wait * 时返回给用户. */ if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { if (epi->next == EP_UNACTIVE_PTR) { epi->next = ep->ovflist; ep->ovflist = epi; } goto out_unlock; } /* If this file is already in the ready list we exit soon */ /* 将当前的epitem放入ready list */ if (!ep_is_linked(&epi->rdllink)) list_add_tail(&epi->rdllink, &ep->rdllist); /* * Wake up ( if active ) both the eventpoll wait list and the ->poll() * wait list. */ /* 唤醒epoll_wait... */ if (waitqueue_active(&ep->wq)) wake_up_locked(&ep->wq); /* 如果epollfd也在被poll, 那就唤醒队列里面的所有成员. */ if (waitqueue_active(&ep->poll_wait)) pwake++; out_unlock: spin_unlock_irqrestore(&ep->lock, flags); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&ep->poll_wait); return 1; } /* * Implement the event wait interface for the eventpoll file. It is the kernel * part of the user space epoll_wait(2). */ SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, int, maxevents, int, timeout) { int error; struct file *file; struct eventpoll *ep; /* The maximum number of event must be greater than zero */ if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) return -EINVAL; /* Verify that the area passed by the user is writeable */ /* 这个地方有必要说明一下: * 内核对应用程序采取的策略是"绝对不信任", * 所以内核跟应用程序之间的数据交互大都是copy, 不允许(也时候也是不能...)指针引用. * epoll_wait()需要内核返回数据给用户空间, 内存由用户程序提供, * 所以内核会用一些手段来验证这一段内存空间是不是有效的. */ if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { error = -EFAULT; goto error_return; } /* Get the "struct file *" for the eventpoll file */ error = -EBADF; /* 获取epollfd的struct file, epollfd也是文件嘛 */ file = fget(epfd); if (!file) goto error_return; /* * We have to check that the file structure underneath the fd * the user passed to us _is_ an eventpoll file. */ error = -EINVAL; /* 检查一下它是不是一个真正的epollfd... */ if (!is_file_epoll(file)) goto error_fput; /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ /* 获取eventpoll结构 */ ep = file->private_data; /* Time to fish for events ... */ /* OK, 睡觉, 等待事件到来~~ */ error = ep_poll(ep, events, maxevents, timeout); error_fput: fput(file); error_return: return error; } /* 这个函数真正将执行epoll_wait的进程带入睡眠状态... */ static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, int maxevents, long timeout) { int res, eavail; unsigned long flags; long jtimeout; wait_queue_t wait;//等待队列 /* * Calculate the timeout by checking for the "infinite" value (-1) * and the overflow condition. The passed timeout is in milliseconds, * that why (t * HZ) / 1000. */ /* 计算睡觉时间, 毫秒要转换为HZ */ jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; retry: spin_lock_irqsave(&ep->lock, flags); res = 0; /* 如果ready list不为空, 就不睡了, 直接干活... */ if (list_empty(&ep->rdllist)) { /* * We don't have any available event to return to the caller. * We need to sleep here, and we will be wake up by * ep_poll_callback() when events will become available. */ /* OK, 初始化一个等待队列, 准备直接把自己挂起, * 注意current是一个宏, 代表当前进程 */ init_waitqueue_entry(&wait, current);//初始化等待队列,wait表示当前进程 __add_wait_queue_exclusive(&ep->wq, &wait);//挂载到ep结构的等待队列 for (;;) { /* * We don't want to sleep if the ep_poll_callback() sends us * a wakeup in between. That's why we set the task state * to TASK_INTERRUPTIBLE before doing the checks. */ /* 将当前进程设置位睡眠, 但是可以被信号唤醒的状态, * 注意这个设置是"将来时", 我们此刻还没睡! */ set_current_state(TASK_INTERRUPTIBLE); /* 如果这个时候, ready list里面有成员了, * 或者睡眠时间已经过了, 就直接不睡了... */ if (!list_empty(&ep->rdllist) || !jtimeout) break; /* 如果有信号产生, 也起床... */ if (signal_pending(current)) { res = -EINTR; break; } /* 啥事都没有,解锁, 睡觉... */ spin_unlock_irqrestore(&ep->lock, flags); /* jtimeout这个时间后, 会被唤醒, * ep_poll_callback()如果此时被调用, * 那么我们就会直接被唤醒, 不用等时间了... * 再次强调一下ep_poll_callback()的调用时机是由被监听的fd * 的具体实现, 比如socket或者某个设备驱动来决定的, * 因为等待队列头是他们持有的, epoll和当前进程 * 只是单纯的等待... **/ jtimeout = schedule_timeout(jtimeout);//睡觉 spin_lock_irqsave(&ep->lock, flags); } __remove_wait_queue(&ep->wq, &wait); /* OK 我们醒来了... */ set_current_state(TASK_RUNNING); } /* Is it worth to try to dig for events ? */ eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; spin_unlock_irqrestore(&ep->lock, flags); /* * Try to transfer events to user space. In case we get 0 events and * there's still timeout left over, we go trying again in search of * more luck. */ /* 如果一切正常, 有event发生, 就开始准备数据copy给用户空间了... */ if (!res && eavail && !(res = ep_send_events(ep, events, maxevents)) && jtimeout) goto retry; return res; } /* 这个简单, 我们直奔下一个... */ static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events, int maxevents) { struct ep_send_events_data esed; esed.maxevents = maxevents; esed.events = events; return ep_scan_ready_list(ep, ep_send_events_proc, &esed); } /** * ep_scan_ready_list - Scans the ready list in a way that makes possible for * the scan code, to call f_op->poll(). Also allows for * O(NumReady) performance. * * @ep: Pointer to the epoll private data structure. * @sproc: Pointer to the scan callback. * @priv: Private opaque data passed to the @sproc callback. * * Returns: The same integer error code returned by the @sproc callback. */ static int ep_scan_ready_list(struct eventpoll *ep, int (*sproc)(struct eventpoll *, struct list_head *, void *), void *priv) { int error, pwake = 0; unsigned long flags; struct epitem *epi, *nepi; LIST_HEAD(txlist); /* * We need to lock this because we could be hit by * eventpoll_release_file() and epoll_ctl(). */ mutex_lock(&ep->mtx); /* * Steal the ready list, and re-init the original one to the * empty list. Also, set ep->ovflist to NULL so that events * happening while looping w/out locks, are not lost. We cannot * have the poll callback to queue directly on ep->rdllist, * because we want the "sproc" callback to be able to do it * in a lockless way. */ spin_lock_irqsave(&ep->lock, flags); /* 这一步要注意, 首先, 所有监听到events的epitem都链到rdllist上了, * 但是这一步之后, 所有的epitem都转移到了txlist上, 而rdllist被清空了, * 要注意哦, rdllist已经被清空了! */ list_splice_init(&ep->rdllist, &txlist); /* ovflist, 在ep_poll_callback()里面我解释过, 此时此刻我们不希望 * 有新的event加入到ready list中了, 保存后下次再处理... */ ep->ovflist = NULL; spin_unlock_irqrestore(&ep->lock, flags); /* * Now call the callback function. */ /* 在这个回调函数里面处理每个epitem * sproc 就是 ep_send_events_proc, 下面会注释到. */ error = (*sproc)(ep, &txlist, priv); spin_lock_irqsave(&ep->lock, flags); /* * During the time we spent inside the "sproc" callback, some * other events might have been queued by the poll callback. * We re-insert them inside the main ready-list here. */ /* 现在我们来处理ovflist, 这些epitem都是我们在传递数据给用户空间时 * 监听到了事件. */ for (nepi = ep->ovflist; (epi = nepi) != NULL; nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { /* * We need to check if the item is already in the list. * During the "sproc" callback execution time, items are * queued into ->ovflist but the "txlist" might already * contain them, and the list_splice() below takes care of them. */ /* 将这些直接放入readylist */ if (!ep_is_linked(&epi->rdllink)) list_add_tail(&epi->rdllink, &ep->rdllist); } /* * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after * releasing the lock, events will be queued in the normal way inside * ep->rdllist. */ ep->ovflist = EP_UNACTIVE_PTR; /* * Quickly re-inject items left on "txlist". */ /* 上一次没有处理完的epitem, 重新插入到ready list */ list_splice(&txlist, &ep->rdllist); /* ready list不为空, 直接唤醒... */ if (!list_empty(&ep->rdllist)) { /* * Wake up (if active) both the eventpoll wait list and * the ->poll() wait list (delayed after we release the lock). */ if (waitqueue_active(&ep->wq)) wake_up_locked(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; } spin_unlock_irqrestore(&ep->lock, flags); mutex_unlock(&ep->mtx); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&ep->poll_wait); return error; } /* 该函数作为callbakc在ep_scan_ready_list()中被调用 * head是一个链表, 包含了已经ready的epitem, * 这个不是eventpoll里面的ready list, 而是上面函数中的txlist. */ static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, void *priv) { struct ep_send_events_data *esed = priv; int eventcnt; unsigned int revents; struct epitem *epi; struct epoll_event __user *uevent; /* * We can loop without lock because we are passed a task private list. * Items cannot vanish during the loop because ep_scan_ready_list() is * holding "mtx" during this call. */ /* 扫描整个链表... */ for (eventcnt = 0, uevent = esed->events; !list_empty(head) && eventcnt < esed->maxevents;) { /* 取出第一个成员 */ epi = list_first_entry(head, struct epitem, rdllink); /* 然后从链表里面移除 */ list_del_init(&epi->rdllink); /* 读取events, * 注意events我们ep_poll_callback()里面已经取过一次了, 为啥还要再取? * 1. 我们当然希望能拿到此刻的最新数据, events是会变的~ * 2. 不是所有的poll实现, 都通过等待队列传递了events, 有可能某些驱动压根没传 * 必须主动去读取. */ revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & epi->event.events; if (revents) { /* 将当前的事件和用户传入的数据都copy给用户空间, * 就是epoll_wait()后应用程序能读到的那一堆数据. */ if (__put_user(revents, &uevent->events) || __put_user(epi->event.data, &uevent->data)) { list_add(&epi->rdllink, head); return eventcnt ? eventcnt : -EFAULT; } eventcnt++; uevent++; if (epi->event.events & EPOLLONESHOT) epi->event.events &= EP_PRIVATE_BITS; else if (!(epi->event.events & EPOLLET)) { /* 嘿嘿, EPOLLET和非ET的区别就在这一步之差呀~ * 如果是ET, epitem是不会再进入到readly list, * 除非fd再次发生了状态改变, ep_poll_callback被调用. * 如果是非ET, 不管你还有没有有效的事件或者数据, * 都会被重新插入到ready list, 再下一次epoll_wait * 时, 会立即返回, 并通知给用户空间. 当然如果这个 * 被监听的fds确实没事件也没数据了, epoll_wait会返回一个0, * 空转一次. */ list_add_tail(&epi->rdllink, &ep->rdllist); } } } return eventcnt; } /* ep_free在epollfd被close时调用, * 释放一些资源而已, 比较简单 */ static void ep_free(struct eventpoll *ep) { struct rb_node *rbp; struct epitem *epi; /* We need to release all tasks waiting for these file */ if (waitqueue_active(&ep->poll_wait)) ep_poll_safewake(&ep->poll_wait); /* * We need to lock this because we could be hit by * eventpoll_release_file() while we're freeing the "struct eventpoll". * We do not need to hold "ep->mtx" here because the epoll file * is on the way to be removed and no one has references to it * anymore. The only hit might come from eventpoll_release_file() but * holding "epmutex" is sufficent here. */ mutex_lock(&epmutex); /* * Walks through the whole tree by unregistering poll callbacks. */ for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { epi = rb_entry(rbp, struct epitem, rbn); ep_unregister_pollwait(ep, epi); } /* * Walks through the whole tree by freeing each "struct epitem". At this * point we are sure no poll callbacks will be lingering around, and also by * holding "epmutex" we can be sure that no file cleanup code will hit * us during this operation. So we can avoid the lock on "ep->lock". */ /* 之所以在关闭epollfd之前不需要调用epoll_ctl移除已经添加的fd, * 是因为这里已经做了... */ while ((rbp = rb_first(&ep->rbr)) != NULL) { epi = rb_entry(rbp, struct epitem, rbn); ep_remove(ep, epi); } mutex_unlock(&epmutex); mutex_destroy(&ep->mtx); free_uid(ep->user); kfree(ep); } /* File callbacks that implement the eventpoll file behaviour */ static const struct file_operations eventpoll_fops = { .release = ep_eventpoll_release, .poll = ep_eventpoll_poll }; /* Fast test to see if the file is an evenpoll file */ static inline int is_file_epoll(struct file *f) { return f->f_op == &eventpoll_fops; } /* OK, eventpoll我认为比较重要的函数都注释完了... */
epoll_create
从slab缓存中创建一个eventpoll对象,并且创建一个匿名的fd跟fd对应的file对象, 而eventpoll对象保存在struct file结构的private指针中,并且返回, 该fd对应的file operations只是实现了poll跟release操作。
创建eventpoll对象的初始化操作,获取当前用户信息,是不是root,最大监听fd数目等并且保存到eventpoll对象中 初始化等待队列,初始化就绪链表,初始化红黑树的头结点。
epoll_ctl操作
将epoll_event结构拷贝到内核空间中,并且判断加入的fd是否支持poll结构(epoll,poll,selectI/O多路复用必须支持poll操作),并且从epfd->file->privatedata获取event_poll对象,根据op区分是添加删除还是修改, 首先在eventpoll结构中的红黑树查找是否已经存在了相对应的fd,没找到就支持插入操作,否则报重复的错误,相对应的修改,删除比较简单就不啰嗦了。
插入操作时,会创建一个与fd对应的epitem结构,并且初始化相关成员,比如保存监听的fd跟file结构之类的,重要的是指定了调用poll_wait时的回调函数用于数据就绪时唤醒进程,(其内部,初始化设备的等待队列,将该进程注册到等待队列)完成这一步, 我们的epitem就跟这个socket关联起来了, 当它有状态变化时, 会通过ep_poll_callback()来通知,最后调用加入的fd的file operation->poll函数(最后会调用poll_wait操作)用于完成注册操作,最后将epitem结构添加到红黑树中。
epoll_wait操作
计算睡眠时间(如果有),判断eventpoll对象的链表是否为空,不为空那就干活不睡明.并且初始化一个等待队列,把自己挂上去,设置自己的进程状态,为可睡眠状态.判断是否有信号到来(有的话直接被中断醒来,),如果啥事都没有那就调用schedule_timeout进行睡眠,如果超时或者被唤醒,首先从自己初始化的等待队列删除,然后开始拷贝资源给用户空间了,拷贝资源则是先把就绪事件链表转移到中间链表,然后挨个遍历拷贝到用户空间, 并且挨个判断其是否为水平触发,是的话再次插入到就绪链表。
四、epoll使用实例:TCP服务端处理多个客户端请求
4.1epoll创建
int epoll_create(int size); //监听个数
4.2epoll事件设置
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event)
第一个参数epfd是epoll_create()的返回值,
第二个参数op表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中; EPOLL_CTL_MOD:修改已经注册的fd的监听事件; EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,
第四个参数是告诉内核需要监听什么事,
struct epoll_event结构如下:
struct epoll_event { __uint32_t events; /* Epoll events */ epoll_data_t data; /* User data variable */ };
events可以是以下几个宏的集合:
- EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
- EPOLLOUT:表示对应的文件描述符可以写;
- EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
- EPOLLERR:表示对应的文件描述符发生错误;
- EPOLLHUP:表示对应的文件描述符被挂断;
- EPOLLET:将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
- EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里
4.3epoll监听
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout)
- 等待事件的产生,类似于select()调用。
- 参数events用来从内核得到事件的集合,
- maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,
- 参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。
- 该函数返回需要处理的事件数目,如返回0表示已超时。
4.4编程实例测试
本次测试在上篇Unix域socket通信代码的基础上进行修改,只使用TCP方式的socket通信进行测试。
上篇的测试代码,服务端接收到一个客户端的连接后,就仅对该客户端进行服务,没有再接收其它客户端的处理逻辑,本篇要实现的,就是一个服务端,能够接收多个客户端的数据。
编程之前,先来看下要实现的程序结构,其中黄色的部分为本篇在上篇例程的基础上,需要增加的部分
1)为socket服务端增加epoll监听功能
TCP服务端的代码修改后如下,主要的修改在listen之后,创建一个epoll,然后把服务端的socketfd加入epoll进行监听:
当有新的客户端请求连接时,服务端的socketfd会收到事件,进而epoll会收到服务端socketfd的EPOLLIN事件,此时可以让服务端接受客户端的请求,并把创建的客户端fd也加入到epoll进行监听
当客户端连接成功并被epoll监听后,客户端再发消息过来,epoll就会收到对应客户端fd的EPOLLIN事件,此时可以让服务端读取客户端的消息
#define LISTEN_MAX 5 #define EPOLL_FDSIZE LISTEN_MAX #define EPOLL_EVENTS 20 #define CLIENT_NUM 3 void EpollAddEvent(int epollfd, int fd, int event) { PRINT("epollfd:%d add fd:%d(event:%d)\n", epollfd, fd, event); struct epoll_event ev; ev.events = event; ev.data.fd = fd; epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev); } void TcpServerThread() { //------------socket int sockfd = socket(AF_UNIX, SOCK_STREAM, 0); if (sockfd < 0) { PRINT("create socket fail\n"); return; } PRINT("create socketfd:%d\n", sockfd); struct sockaddr_un addr; memset (&addr, 0, sizeof(addr)); addr.sun_family = AF_UNIX; strcpy(addr.sun_path, UNIX_TCP_SOCKET_ADDR); //------------bind if (bind(sockfd, (struct sockaddr *)&addr, sizeof(addr))) { PRINT("bind fail\n"); return; } PRINT("bind ok\n"); //------------listen if (listen(sockfd, LISTEN_MAX)) { PRINT("listen fail\n"); return; } PRINT("listen ok\n"); //------------epoll--------------- int epollfd = epoll_create(EPOLL_FDSIZE); if (epollfd < 0) { PRINT("epoll create fail\n"); return; } PRINT("epoll create fd:%d\n", epollfd); EpollAddEvent(epollfd, sockfd, EPOLLIN); struct epoll_event events[EPOLL_EVENTS]; while(1) { PRINT("epoll wait...\n"); int num = epoll_wait(epollfd, events, EPOLL_EVENTS, -1); PRINT("epoll wait done, num:%d\n", num); for (int i = 0;i < num;i++) { int fd = events[i].data.fd; if (EPOLLIN == events[i].events) { //接受客户端的连接请求 if (fd == sockfd) { //------------accept int clientfd = accept(sockfd, NULL, NULL); if (clientfd == -1) { PRINT("accpet error\n"); } else { PRINT("=====> accept new clientfd:%d\n", clientfd); EpollAddEvent(epollfd, clientfd, EPOLLIN); } } //读取客户端发来的数据 else { char buf[BUF_SIZE] = {0}; //------------recv size_t size = recv(fd, buf, BUF_SIZE, 0); //size = read(clientfd, buf, BUF_SIZE); if (size > 0) { PRINT("recv from clientfd:%d, msg:%s\n", fd, buf); } } } } } PRINT("end\n"); }
2)启动多个客户端进行测试
修改主程序,创建多个客户端线程,产生多个客户端,去连接同一个服务端,来测试epoll监听多个事件的功能。
int main() { unlink(UNIX_TCP_SOCKET_ADDR); //创建一个服务端 thread thServer(TcpServerThread); //创建多个客户端 thread thClinet[CLIENT_NUM]; for (int i=0; i<CLIENT_NUM; i++) { thClinet[i] = thread(TcpClientThread); sleep(1); } while(1) { sleep(5); } }
本例中,CLIENT_NUM为3,使用3个客户端来测试epoll功能。
3)测试结果
在Ubuntu上编译运行,程序运行时的打印如下:
[TcpServerThread] create socketfd:3 [TcpServerThread] bind ok [TcpClientThread] create socketfd:4 [TcpServerThread] listen ok [TcpServerThread] epoll create fd:5 [EpollAddEvent] epollfd:5 add fd:3(event:1) [TcpServerThread] epoll wait... [TcpClientThread] create socketfd:6 [TcpClientThread] connect ok [TcpServerThread] epoll wait done, num:1 [TcpServerThread] =====> accept new clientfd:7 [EpollAddEvent] epollfd:5 add fd:7(event:1) [TcpServerThread] epoll wait... [TcpServerThread] epoll wait done, num:1 [TcpServerThread] recv from clientfd:7, msg:helloTCP(fd:4)1 [TcpServerThread] epoll wait... [TcpClientThread] create socketfd:8 [TcpClientThread] connect ok [TcpServerThread] epoll wait done, num:2 [TcpServerThread] recv from clientfd:7, msg:helloTCP(fd:4)2 [TcpServerThread] =====> accept new clientfd:9 [EpollAddEvent] epollfd:5 add fd:9(event:1) [TcpServerThread] epoll wait... [TcpServerThread] epoll wait done, num:1 [TcpServerThread] recv from clientfd:9, msg:helloTCP(fd:6)3 [TcpServerThread] epoll wait... [TcpClientThread] connect ok [TcpServerThread] epoll wait done, num:3 [TcpServerThread] =====> accept new clientfd:10 [EpollAddEvent] epollfd:5 add fd:10(event:1) [TcpServerThread] recv from clientfd:7, msg:helloTCP(fd:4)5 [TcpServerThread] recv from clientfd:9, msg:helloTCP(fd:6)6 [TcpServerThread] epoll wait... [TcpServerThread] epoll wait done, num:1 [TcpServerThread] recv from clientfd:10, msg:helloTCP(fd:8)4 [TcpServerThread] epoll wait... [TcpServerThread] epoll wait done, num:3 [TcpServerThread] recv from clientfd:10, msg:helloTCP(fd:8)7 [TcpServerThread] recv from clientfd:7, msg:helloTCP(fd:4)8 [TcpServerThread] recv from clientfd:9, msg:helloTCP(fd:6)9 [TcpServerThread] epoll wait... [TcpServerThread] epoll wait done, num:1 [TcpServerThread] recv from clientfd:7, msg:helloTCP(fd:4)10 [TcpServerThread] epoll wait... [TcpServerThread] epoll wait done, num:2 [TcpServerThread] recv from clientfd:9, msg:helloTCP(fd:6)12 [TcpServerThread] recv from clientfd:10, msg:helloTCP(fd:8)11 [TcpServerThread] epoll wait... [TcpServerThread] epoll wait done, num:3 [TcpServerThread] recv from clientfd:10, msg:helloTCP(fd:8)14 [TcpServerThread] recv from clientfd:7, msg:helloTCP(fd:4)13 [TcpServerThread] recv from clientfd:9, msg:helloTCP(fd:6)15 [TcpServerThread] epoll wait... [TcpServerThread] epoll wait done, num:3 [TcpServerThread] recv from clientfd:10, msg:helloTCP(fd:8)16 [TcpServerThread] recv from clientfd:7, msg:helloTCP(fd:4)17 [TcpServerThread] recv from clientfd:9, msg:helloTCP(fd:6)18 [TcpServerThread] epoll wait...
对结果标注一下,更容易理解程序运行过程:
可以看到,服务端依次接受了3个客户端的连接请求,然后可以接收3个客户端发来的数据。
秋招可以写进简历的6个实战项目: