Python最差实践

简介: Python最差实践

最近在看一些陈年老系统,其中有一些不好的代码习惯遗留下来的坑;加上最近自己也写了一段烂代码导致服务器负载飙升,所以就趁此机会总结下我看到过/写过的自认为不好的Python代码习惯,时刻提醒自己远离这些“最差实践”,避免挖坑。  


下面所举的例子中,有一部分会造成性能问题,有一部分会导致隐藏bug,或日后维护、重构困难,还有一部分纯粹是我认为不够pythonic。所以大家自行甄别,取精去糟吧。  


函数默认参数使用可变对象

这个例子我想大家应该在各种技术文章中见过许多遍了,也足以证明这是一个大坑。  


先看错误示范吧:


def use_mutable_default_param(idx=0, ids=[]):
    ids.append(idx)
    print(idx)
    print(ids)
use_mutable_default_param(idx=1)
use_mutable_default_param(idx=2)

输出:

1
[1]
2
[1, 2]

理解这其中的原因,最重要的是有两点:

函数本身也是一个对象,默认参数绑定于这个函数对象

append这类方法会直接修改对象,所以下次调用此函数时,其绑定的默认参数已经不再是空list了

正确的做法如下:

def donot_use_mutable_default_param(idx=0, ids=None):
    if ids is None:
        ids = []
    ids.append(idx)
    print(idx)
    print(ids)

try…except不具体指明异常类型


虽然在Python中使用try…except不会带来严重的性能问题,但是不加区分,直接捕获所有类型异常的做法,往往会掩盖掉其他的bug,造成难以追查的bug。  


一般的,我觉得应该尽量少的使用try…except,这样可以在开发期尽早的发现问题。即使要使用try…except,也应该尽可能的指定出要捕获的具体异常,并在except语句中将异常信息记入log,或者处理完之后,再直接raise出来。


关于dict的冗余代码

我经常能够看到这样的代码:

d = {}
datas = [1, 2, 3, 4, 2, 3, 4, 1, 5]
for k in datas:
    if k not in d:
        d[k] = 0 
    d[k] += 1

其实,完全可以使用collections.defaultdict这一数据结构更简单优雅的实现这样的功能:

default_d = defaultdict(lambda: 0)
datas = [1, 2, 3, 4, 2, 3, 4, 1, 5]
for k in datas:
    default_d[k] += 1

同样的,这样的代码:

# d is a dict
if 'list' not in d:
    d['list'] = []
d['list'].append(x)

完全可以用这样一行代码替代:

# d is a dict
d.setdefault('list', []).append(x)

同样的,下面这两种写法一看就是带有浓浓的C味儿:

# d is a dict
for k in d:
    v = d[k]
    # do something
# l is a list
for i in len(l):
    v = l[i]
    # do something

应该用更pythonic的写法:

# d is a dict
for k, v in d.iteritems():
    # do something
    pass
# l is a list
for i, v in enumerate(l):
    # do something
    pass

另外,enumerate其实还有个第二参数,表示序号从几开始。如果想要序号从1开始数起,可以使用enumerate(l, 1)。  


使用flag变量而不使用for…else语句

同样,这样的代码也很常见:

search_list = ['Jone', 'Aric', 'Luise', 'Frank', 'Wey']
found = False
for s in search_list:
    if s.startswith('C'):
        found = True
        # do something when found
        print('Found')
        break
if not found:
    # do something when not found
    print('Not found')

其实,用for…else更优雅:


search_list = ['Jone', 'Aric', 'Luise', 'Frank', 'Wey']
for s in search_list:
    if s.startswith('C'):
        # do something when found
        print('Found')
        break
else:
    # do something when not found
    print('Not found')

过度使用tuple unpacking

在Python中,允许对tuple类型进行unpack操作,如下所示:

1

2

# human = ('James', 180, 32)

name,height,age =human


这个特性用起来很爽,比写name=human[0]之类的不知道高到哪里去了。所以,这一特性往往被滥用,一个human在程序的各处通过上面的方式unpack。  


然而如果后来需要在human中插入一个表示性别的数据sex,那么对于所有的这种unpack都需要进行修改,即使在有些逻辑中并不会使用到性别。

# human = ('James', 180, 32)
name,height,age, _ = human
# or
# name, height, age, sex = human

有如下几种方式解决这一问题:  

老老实实写name=human[0]这种代码,在需要使用性别信息处加上sex=human[3]

使用dict来表示human

使用namedtuple

# human = namedtuple('human', ['name', 'height', 'age', 'sex'])
h = human('James', 180, 32, 0)
# then you can use h.name, h.sex and so on everywhere.

到处都是import *

import *是一种懒惰的行为,它不仅会污染当前的命名空间,并且还会使得pyflakes等代码检查工具失效。在后续查看代码或者debug的过程中,往往也很难从一堆import *中找到一个第三方函数的来源。  


可以说这种习惯是百害而无一利的。  


相关文章
|
5天前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
33 11
|
1月前
|
存储 程序员 开发者
Python编程基础:从入门到实践
【10月更文挑战第8天】在本文中,我们将一起探索Python编程的奇妙世界。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供有价值的信息。我们将从Python的基本概念开始,然后逐步深入到更复杂的主题,如数据结构、函数和类。最后,我们将通过一些实际的代码示例来巩固我们的知识。让我们一起开始这段Python编程之旅吧!
|
2天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
1天前
|
设计模式 缓存 开发框架
Python中的装饰器:从入门到实践####
本文深入探讨了Python中装饰器的工作原理与应用,通过具体案例展示了如何利用装饰器增强函数功能、提高代码复用性和可读性。读者将学习到装饰器的基本概念、实现方法及其在实际项目开发中的实用技巧。 ####
11 3
|
5天前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。
|
3天前
|
数据采集 IDE 测试技术
Python实现自动化办公:从基础到实践###
【10月更文挑战第21天】 本文将探讨如何利用Python编程语言实现自动化办公,从基础概念到实际操作,涵盖常用库、脚本编写技巧及实战案例。通过本文,读者将掌握使用Python提升工作效率的方法,减少重复性劳动,提高工作质量。 ###
14 1
|
5天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
11 2
|
8天前
|
算法 Python
Python图论探索:从理论到实践,DFS与BFS遍历技巧让你秒变技术大牛
图论在数据结构与算法中占据重要地位,应用广泛。本文通过Python代码实现深度优先搜索(DFS)和广度优先搜索(BFS),帮助读者掌握图的遍历技巧。DFS沿路径深入搜索,BFS逐层向外扩展,两者各具优势。掌握这些技巧,为解决复杂问题打下坚实基础。
18 2
|
7天前
|
搜索推荐 Python
快速排序的 Python 实践:从原理到优化,打造你的排序利器!
本文介绍了 Python 中的快速排序算法,从基本原理、实现代码到优化方法进行了详细探讨。快速排序采用分治策略,通过选择基准元素将数组分为两部分,递归排序。文章还对比了快速排序与冒泡排序的性能,展示了优化前后快速排序的差异。通过这些分析,帮助读者理解快速排序的优势及优化的重要性,从而在实际应用中选择合适的排序算法和优化策略,提升程序性能。
19 1
|
9天前
|
Python
探索Python装饰器:从入门到实践
【10月更文挑战第32天】在编程世界中,装饰器是一种特殊的函数,它允许我们在不改变原有函数代码的情况下,增加额外的功能。本文将通过简单易懂的语言和实际案例,带你了解Python中装饰器的基础知识、应用以及如何自定义装饰器,让你的代码更加灵活和强大。
14 2