Java高级开发高频面试题(六)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Java高级开发高频面试题

🍊 Redis持久化

面试题:Redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?持久化机制具体底层是如何实现的?save与bgsave?

持久化主要是做灾难恢复、数据恢复,高可用。比如你 redis 整个挂了,然后 redis 就不可用了,我们要做的事情就是让 redis 变得可用,尽快变得可用。 重启 redis,尽快让它堆外提供服务,如果没做数据备份,这时候 redis 启动了,也不可用啊,数据都没了。把 redis 持久化做好, 那么即使 redis 故障了,也可以通过备份数据,快速恢复,一旦恢复立即对外提供服务。

redis持久化有三种方式:RDB,AOF,(RDB和AOF)混合持久化

默认情况下, Redis 将内存数据库快照保存在名字为 dump.rdb 的二进制文件中,也就是RDB快照。

RDB 持久化机制,是对 redis 中的数据执行周期性的持久化。

AOF 持久化机制,是对每条写入命令作为日志,重启的时候,可以通过回放日志中的写入指令来重新构建整个数据集。

不同的持久化机制都有什么优缺点?

🎉 RDB持久化

RDB会生成多个数据文件,每个数据文件都代表了某一个时刻中 redis 的数据。 redis 主进程只需要 fork一个子进程,让子进程执行磁盘 IO 操作来进行 RDB持久化,对外提供的读写服务,影响非常小。但是如果数据文件特别大,可能会导致对客户端提供的服务暂停数秒。 RDB 数据文件来重启和恢复 redis 进程更快 RDB会丢失某一时间段的数据,一般来说,RDB 数据快照文件,都是每隔 5分钟,或者更长时间生成一次,这个时候就得接受一旦 redis 进程宕机,那么会丢失最近 5 分钟的数据。

🎉 AOF持久化

AOF 可以更好的保护数据不丢失,一般 AOF 每隔 1 秒,通过一个后台线程执行一次fsync操作,最多丢失 1 秒钟的数据。 AOF日志文件以 append-only 模式写入,所以没有任何磁盘寻址的开销,写入性能很高,而且文件不容易破损。 AOF 日志文件即使过大的时候,可以进行后台重写操作,也不会影响客户端的读写。在重写的时候,会进行压缩,创建出一份最小恢复数据的日志出来。在创建新日志文件的时候,老的日志文件还是照常写入。新日志文件创建完成以后,再去读的时候,交换新老日志文件就可以了。某人不小心用 flushall 命令清空了所有数据,只要这个时候后台重写命令还没有发生,那么就可以立即拷贝 AOF 文件,将最后一 flushall 命令给删了,然后再将该 AOF 文件放回去,就可以通过恢复机制,自动恢复所有数据。 AOF 日志文件通常比 RDB数据快照文件更大。 支持的写 QPS 会比 RDB 支持的写 QPS 低,因为 AOF 一般会配置成每秒 fsync一次日志文件,当然,每秒一次 fsync,性能也还是很高的。

🎉 混合持久化

仅仅使用 RDB,会导致丢失很多数据 仅仅使用 AOF,速度慢,支持的QPS低,性能不高 开启开启两种持久化方式,用 AOF 来保证数据不丢失,作为数据恢复的第一选择; 在 AOF 文件都丢失或损坏不可用的时候,还可以使用 RDB 来进行快速的数据恢复。

🎉 持久化底层实现原理

持久化机制具体底层是如何实现的?

📝 RDB持久化底层实现原理

RDB持久化可以通过配置与手动执行命令生成RDB文件。 可以对 Redis 进行设置, 让它在“ N 秒内数据集至少有 M个改动”这一条件被满足时, 自动保存一次数据集。比如说设置让 Redis 在满足“ 60 秒内有至少有 1000 个键被改动”,自动保存一次数据集。通过 save 60 1000 命令生成RDB快照,关闭RDB只需要将所有的save保存策略注释掉即可。手动执行命令生成RDB快照,进入redis客户端执行命令save或bgsave可以生成dump.rdb文件,每次命令执行都会将所有redis内存快照到一个新的rdb文件里,并覆盖原有rdb快照文件。

📝 AOF持久化底层实现原理

AOF持久化可以通过配置与手动执行命令生成RDB文件。 通过配置# appendonly yes 开启AOF持久化, 每当 Redis 执行一个改变数据集的命令时, 这个命令就会被追加到 AOF 文件的末尾,当 Redis 重新启动时, 程序就可以通过重新执行 AOF 文件中的命令来达到重建数据集的目的,配置 Redis 多久才将数据 fsync 到磁盘一次,默认的措施为每秒 fsync 一次。AOF文件里可能有太多没用指令,所以AOF会定期根据内存的最新数据重新生成aof文件,可以通过配置文件达到64M才会自动重写,也可以配置aof文件自上一次重写后文件大小增长了100%则再次触发重写 手动执行命令bgrewriteaof重写AOF,AOF重写redis会fork出一个子进程去做(与bgsave命令类似),不会对redis正常命令处理有太多影响。

📝 混合持久化底层实现原理

通过配置# aof-use-rdb-preamble yes 开启混合持久化,开启了混合持久化,AOF在重写时,不再是单纯将内存数据转换为RESP命令写入AOF文件,而是将重写这一刻之前的内存做RDB快照处理,并且将RDB快照内容和增量的AOF修改内存数据的命令存在一起,都写入新的AOF文件,新的文件一开始不叫appendonly.aof,等到重写完新的AOF文件才会进行改名,覆盖原有的AOF文件,完成新旧两个AOF文件的替换。于是在 Redis 重启的时候,可以先加载 RDB 的内容,然后再重放增量 AOF 日志就可以完全替代之前的 AOF 全量文件重放,因此重启效率大幅得到提升。

📝 save与bgsave

bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。此时,如果主线程对这些数据也都是读操作,那么,主线程和 bgsave 子进程相互不影响。但是,如果主线程要修改一块数据,那么,这块数据就会被复制一份,生成该数据的副本。然后,bgsave 子进程会把这个副本数据写入 RDB 文件,而在这个过程中,主线程仍然可以直接修改原来的数据。 save 它是同步阻塞的,会阻塞客户端命令和redis其它命令,和bgsave相比不会消耗额外内存。

🍊 Redis过期策略

Redis采用的过期策略

惰性删除+定期删除

🎉 惰性删除流程

在进行get或setnx等操作时,先检查key是否过期,若过期,删除key,然后执行相应操作;若没过期,直接执行相应操作

🎉 定期删除流程

对指定个数个库的每一个库随机删除小于等于指定个数个过期key,遍历每个数据库(就是redis.conf中配置的"database"数量,默认为16),检查当前库中的指定个数个key(默认是每个库检查20个key,注意相当于该循环执行20次,循环体时下边的描述),如果当前库中没有一个key设置了过期时间,直接执行下一个库的遍历,随机获取一个设置了过期时间的key,检查该key是否过期,如果过期,删除key,判断定期删除操作是否已经达到指定时长,若已经达到,直接退出定期删除。

问题:定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期 key 堆积在内存里,导致 Redis 内存块耗尽了,怎么解决呢?走内存淘汰机制。

🎉 内存淘汰机制

Redis 内存淘汰机制有以下几个:

noeviction: 当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了。

allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)。

allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的 key 给干掉啊。

volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key(这个一般不太合适)。

volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 key。

volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 key 优先移除。

默认就是如果满的话就拒绝抛异常,正常一般用LFU和LRU二种。LFU是基于梯形数组,每个数组上面就挂了一个Counter,Counter是用来统计它的服务次数的,通过访问次数来进行升级,LFU的LRU字段里面高16位存储一个分钟数级别的时间戳,低8位存储的是一个Counter访问计数。和LRU相比,LFU避免了LRU基于最近一段时间的访问没有访问数据,突然访问变成热点数据,导致内存淘汰,没有真正意义上达到冷数据的淘汰。

🎉 RDB对过期key的处理

过期key对RDB没有任何影响,从内存数据库持久化数据到RDB文件:持久化key之前,会检查是否过期,过期的key不进入RDB文件 从RDB文件恢复数据到内存数据库:数据载入数据库之前,会对key先进行过期检查,如果过期,不导入数据库(主库情况)

🎉 AOF对过期key的处理

过期key对AOF没有任何影响 从内存数据库持久化数据到AOF文件:当key过期后,还没有被删除,此时进行执行持久化操作(该key是不会进入aof文件的,因为没有发生修改命令)当key过期后,在发生删除操作时,程序会向aof文件追加一条del命令(在将来的以aof文件恢复数据的时候该过期的键就会被删掉) AOF重写:重写时,会先判断key是否过期,已过期的key不会重写到aof文件。

🍊 Redis与数据库的数据一致性

关于redis与数据库的数据一致性,业界使用最多的是数据同步问题(双删策略)

🎉 双删策略

先更新数据库,再更新缓存;

同时有请求A和请求B进行更新操作,那么会出现:

  1. 线程A更新了数据库;
  2. 线程B更新了数据库;
  3. 线程B更新了缓存;
  4. 线程A更新了缓存;

缺点

这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑!

如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。

如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。

先删除缓存,再更新数据库;

同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:

(1)请求A进行写操作,删除缓存;

(2)请求B查询发现缓存不存在;

(3)请求B去数据库查询得到旧值;

(4)请求B将旧值写入缓存;

(5)请求A将新值写入数据库;

导致数据不一致的情形出现,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。

🎉 延时双删策略

解决方案:延时双删策略

(1)先淘汰缓存;

(2)再写数据库(这两步和原来一样);

(3)休眠1秒,再次淘汰缓存;

这么做,可以将1秒内所造成的缓存脏数据,再次删除!这个一秒如何得出来的呢?评估自己的项目的读数据业务逻辑的耗时,在读数据业务逻辑的耗时基础上,加几百ms即可,确保读请求结束,写请求可以删除读请求造成的缓存脏数据。

MySQL的读写分离架构中

一个请求A进行更新操作,另一个请求B进行查询操作。

(1)请求A进行写操作,删除缓存;

(2)请求A将数据写入数据库了;

(3)请求B查询缓存发现,缓存没有值;

(4)请求B去从库查询,这时,还没有完成主从同步,因此查询到的是旧值;

(5)请求B将旧值写入缓存;

(6)数据库完成主从同步,从库变为新值; 导致数据不一致,解决方案使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百ms。

采用这种同步淘汰策略,吞吐量降低怎么办? ok,那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。

🎉 异步延时删除策略

先更新数据库,再删除缓存; 一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生:

(1)缓存刚好失效;

(2)请求A查询数据库,得一个旧值;

(3)请求B将新值写入数据库;

(4)请求B删除缓存;

(5)请求A将查到的旧值写入缓存;

问题:会发生脏数据,但是几率不大,因为步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。可是,大家想想,数据库的读操作的速度远快于写操作的(不然做读写分离干嘛,做读写分离的意义就是因为读操作比较快,耗资源少),因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。

如何解决脏数据呢?给缓存设有效时间是一种方案。其次,采用策略2(先删除缓存,再更新数据库)里给出的异步延时删除策略,保证读请求完成以后,再进行删除操作。

第二次删除,如果删除失败怎么办? 这是个非常好的问题,因为第二次删除失败,就会出现如下情形。还是有两个请求,一个请求A进行更新操作,另一个请求B进行查询操作,为了方便,假设是单库: (1)请求A进行写操作,删除缓存; (2)请求B查询发现缓存不存在; (3)请求B去数据库查询得到旧值; (4)请求B将旧值写入缓存; (5)请求A将新值写入数据库; (6)请求A试图去删除请求B写入对缓存值,结果失败了;ok,这也就是说。如果第二次删除缓存失败,会再次出现缓存和数据库不一致的问题。

解决方案一

(1)更新数据库数据;

(2)缓存因为种种问题删除失败;

(3)将需要删除的key发送至消息队列;

(4)自己消费消息,获得需要删除的key;

(5)继续重试删除操作,直到成功; 缺点:对业务线代码造成大量的侵入

解决方案二: 启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。

(1)更新数据库数据;

(2)数据库会将操作信息写入binlog日志当中;

(3)订阅程序提取出所需要的数据以及key;

(4)另起一段非业务代码,获得该信息;

(5)尝试删除缓存操作,发现删除失败;

(6)将这些信息发送至消息队列;

(7)重新从消息队列中获得该数据,重试操作;

订阅binlog程序在mysql中有现成的中间件叫canal,可以完成订阅binlog日志的功能。重试机制,采用的是消息队列的方式。如果对一致性要求不是很高,直接在程序中另起一个线程,每隔一段时间去重试。

🍊 Redis分布式锁底层实现

🎉 如何实现

redis使用setnx作为分布式锁,在多线程环境下面,只有一个线程会拿到这把锁,拿到锁的线程执行业务代码,执行业务代码需要一点时间,所以这段时间拒绝了很多等待获取锁的请求,直到有锁的线程最后释放掉锁,其他线程才能获取锁,这个就是redis的分布式锁的使用。

🎉 使用redis锁会有很多异常情况,如何处理这些异常呢

📝 1.redis服务挂掉了,抛出异常了,锁不会被释放掉,新的请求无法进来,出现死锁问题

添加try finally处理

📝 2.服务器果宕机了,导致锁不能被释放的现象

设置超时时间

📝 3.锁的过期时间比业务执行时间短,会存在多个线程拥有同一把锁的现象

如果有一个线程执行需要15s,过期时间只有10s,当执行到10s时第二个线程进来拿到这把锁,会出现多个线程拿到同一把锁执行。

续期超时时间,当一个线程执行5s后对超时时间续期10s,续期设置可以借助redission工具,加锁成功,后台新开一个线程,每隔10秒检查是否还持有锁,如果持有则延长锁的时间,如果加锁失败一直循环(自旋)加锁。

📝 4.锁的过期时间比业务执行时间短,锁永久失效

如果有一个线程执行需要15s,过期时间只有10s,当执行到10s时第二个线程进来拿到这把锁,会出现多个线程拿到同一把锁执行,在第一个线程执行完时会释放掉第二个线程的锁,以此类推,导致锁的永久失效。

给每个线程都设置一个唯一标识,避免出现程序执行的时间超过设置的过期时间,导致其他线程删除了自己的锁,只允许自己删除自己线程的锁

🍊 Redis热点数据缓存

热点数据缓存

当前key是一个热点key(例如一个热门的娱乐新闻),并发量非常大重建缓存不能在短时间完成,可能是一个复杂计算,例如复杂的SQL、多次IO、多个依赖等在缓存失效的瞬间,有大量线程来重建缓存,造成后端负载加大,甚至可能会让应用崩溃。

🎉 互斥锁(mutex)

解决方案一:互斥锁(mutex)

只允许一个线程重建缓存,其他线程等待重建缓存的线程执行完,重新从缓存获取数据。

1)从Redis获取数据,如果值不为空,则直接返回值;否则执行下面的2.1)和2.2)步骤

2.1)如果set(nx和ex)结果为true,说明此时没有其他线程重建缓存, 那么当前线程执行缓存构建逻辑

2.2)如果set(nx和ex)结果为false,说明此时已经有其他线程正在执 行构建缓存的工作,那么当前线程将休息指定时间(例如这里是50毫秒,取决于构建缓存的速度)后,重新执行函数,直到获取到数据。

优缺点:如果构建缓存过程出现问题或者时间较长,可能会存在死锁和线程池阻塞的风险,但是这种方法能够较好地降低后端存储负载,并在一致性上做得比较好。

🎉 永远不过期

解决方案二:永远不过期

从缓存层面来看,确实没有设置过期时间,所以不会出现热点key过期 后产生的问题,也就是“物理”不过期。从功能层面来看,为每个value设置一个逻辑过期时间,当发现超过逻 辑过期时间后,会使用单独的线程去构建缓存。

优缺点:由于没有设置真正的过期时间,实际上已经不存在热点key产生的一系列危害,但是会存在数据不一致的情况,同时代码复杂度会增大。

问题:怎么知道哪些数据是热点数据?因为本地缓存资源有限,不可能把所有的商品数据进行缓存,它只会缓存热点的数据。那怎么知道数据是热点数据呢?

利用redis4.x自身特性,LFU机制发现热点数据。实现很简单,只要把redis内存淘汰机制设置为allkeys-lfu或者volatile-lfu方式,再执行./redis-cli --hotkeys会返回访问频率高的key,并从高到底的排序,在设置key时,需要把商品id带上,这样就是知道是哪些商品了。

🍊 高并发

单机的 Redis,能够承载的 QPS大概就在上万到几万不等。对于缓存来说,一般都是用来支撑读高并发的。因此架构做成主从(master-slave)架构,一主多从,主负责写,并且将数据复制到其它的slave 节点,从节点负责读。所有的读请求全部走从节点。这样也可以很轻松实现水平扩容,支撑读高并发。

🍊 高可用

Redis哨兵集群实现高可用,哨兵是一个分布式系统,你可以在一个架构中运行多个哨兵进程,这些进程使用流言协议来接收关于主节点是否下线的信息,并使用投票协议来决定是否执行自动故障迁移,以及选择哪个备节点作为新的主节点。每个哨兵会向其它哨兵、主节点、备节点定时发送消息,以确认对方是否”活”着,如果发现对方在指定时间(可配置)内未回应,则暂时认为对方已挂.若“哨兵群”中的多数哨兵,都报告某一主节点没响应,系统才认为该主节点"彻底死亡",通过算法,从剩下的备节点中,选一台提升为主节点,然后自动修改相关配置。

🍊 哨兵机制

哨兵是一个分布式系统,你可以在一个架构中运行多个哨兵进程,这些进程使用流言协议来接收关于主节点是否下线的信息,并使用投票协议来决定是否执行自动故障迁移,以及选择哪个备节点作为新的主节点。每个哨兵会向其它哨兵、主节点、备节点定时发送消息,以确认对方是否”活”着,如果发现对方在指定时间(可配置)内未回应,则暂时认为对方已挂。

若“哨兵群”中的多数哨兵,都报告某一主节点没响应,系统才认为该主节点"彻底死亡",通过算法,从剩下的备节点中,选一台提升为主节点,然后自动修改相关配置。可以通过修改sentinel.conf配置文件,配置主节点名称,IP,端口号,选举次数,主服务器的密码,心跳检测毫秒数,做多少个节点等。

🎉 Redis 哨兵主备切换的数据丢失问题

📝 异步复制导致的数据丢失

master->slave 的复制是异步的,所以可能有部分数据还没复制到 slave,master 就宕机了,此时这部分数据就丢失了。 脑裂导致的数据丢失:某个 master 所在机器突然脱离了正常的网络,跟其他 slave 机器不能连接,但是实际上 master还运行着。此时哨兵可能就会认为 master 宕机了,然后开启选举,将其他 slave 切换成了 master。这个时候,集群里就会有两个master ,也就是所谓的脑裂。 此时虽然某个 slave 被切换成了 master,但是可能 client 还没来得及切换到新的master,还继续向旧 master 写数据。因此旧 master 再次恢复的时候,会被作为一个 slave 挂到新的 master上去,自己的数据会清空,重新从新的 master 复制数据。而新的 master 并没有后来 client写入的数据,因此,这部分数据也就丢失了

解决方案:

进行配置:min-slaves-to-write 1 min-slaves-max-lag 10

通过配置至少有 1 个 slave,数据复制和同步的延迟不能超过 10 秒,超过了master 就不会再接收任何请求了。

减少异步复制数据的丢失

一旦 slave 复制数据和 ack 延时太长,就认为可能 master 宕机后损失的数据太多了,那么就拒绝写请求,这样可以把 master宕机时由于部分数据未同步到 slave 导致的数据丢失降低的可控范围内。 减少脑裂的数据丢失:如果一个 master 出现了脑裂,跟其他slave 丢了连接,如果不能继续给指定数量的slave 发送数据,而且 slave 超过10 秒没有给自己ack消息,那么就直接拒绝客户端的写请求。因此在脑裂场景下,最多就丢失10 秒的数据。

🍊 集群模式

数据量很少的情况下,比如你的缓存一般就几个 G,单机就足够了,可以使用 replication,一个 master 多个 slaves,要几个 slave 跟你要求的读吞吐量有关,然后自己搭建一个 sentinel 集群去保证 Redis 主从架构的高可用性。

海量数据+高并发+高可用的场景的情况下,使用Redis cluster ,自动将数据进行分片,每个 master 上放一部分数据,它支撑 N个 Redis master node,每个 master node 都可以挂载多个 slave node。 这样整个 Redis就可以横向扩容了,如果你要支撑更大数据量的缓存,那就横向扩容更多的 master 节点,每个 master节点就能存放更多的数据了。而且部分 master 不可用时,还是可以继续工作的。

在 Redis cluster 架构下,使用cluster bus 进行节点间通信,用来进行故障检测、配置更新、故障转移授权。cluster bus 用了一种二进制的协议, gossip 协议,用于节点间进行高效的数据交换,占用更少的网络带宽和处理时间。

🎉 集群协议

集群元数据的维护:集中式、Gossip 协议

📝 集中式

集中式是将集群元数据(节点信息、故障等等)几种存储在某个节点上。集中式元数据集中存储的一个典型代表,就是大数据领域的 storm。它是分布式的大数据实时计算引擎,是集中式的元数据存储的结构,底层基于zookeeper对所有元数据进行存储维护。集中式的好处在于,元数据的读取和更新,时效性非常好,一旦元数据出现了变更,就立即更新到集中式的存储中,其它节点读取的时候就可以感知到;不好在于,所有的元数据的更新压力全部集中在一个地方,可能会导致元数据的存储有压力。

📝 gossip 协议

gossip 协议,所有节点都持有一份元数据,不同的节点如果出现了元数据的变更,就不断将元数据发送给其它的节点,让其它节点也进行元数据的变更。gossip好处在于,元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续打到所有节点上去更新,降低了压力;不好在于,元数据的更新有延时,可能导致集群中的一些操作会有一些滞后。

在 Redis cluster 架构下,每个节点都有一个专门用于节点间通信的端口,就是自己提供服务的端口号+10000,每个 Redis 要放开两个端口号,比如 7001,那么用于节点间通信的就是 17001 端口,17001端口号是用来进行节点间通信的,也就是 cluster bus 的东西。每个节点每隔一段时间都会往另外几个节点发送 ping 消息,同时其它几个节点接收到 ping 之后返回 pong 。

🍊 多级缓存架构

🍊 并发竞争

Redis 的并发竞争问题是什么?如何解决这个问题?了解 Redis 事务的 CAS 方案吗?

多客户端同时并发写一个 key,可能本来应该先到的数据后到了,导致数据版本错了;或者是多客户端同时获取一个 key,修改值之后再写回去,只要顺序错了,数据就错了。

CAS 类的乐观锁方案:某个时刻,多个系统实例都去更新某个 key。可以基于 zookeeper 实现分布式锁。每个系统通过 zookeeper 获取分布式锁,确保同一时间,只能有一个系统实例在操作某个 key,别人都不允许读和写。

你要写入缓存的数据,都是从 mysql 里查出来的,都得写入 mysql 中,写入 mysql 中的时候必须保存一个时间戳,从 mysql 查出来的时候,时间戳也查出来。每次要写之前,先判断一下当前这个 value 的时间戳是否比缓存里的 value 的时间戳要新。如果是的话,那么可以写,否则,就不能用旧的数据覆盖新的数据。

🍊 Redis cluster 的高可用与主备切换原理

如果一个节点认为另外一个节点宕机,这是属于主观宕机。如果多个节点都认为另外一个节点宕机了,那么就是客观宕机,跟哨兵的原理几乎一样,sdown,odown。流程为:如果一个节点认为某个节点pfail 了,那么会在 gossip ping 消息中, ping 给其他节点,如果超过半数的节点都认为 pfail 了,那么就会变成fail 。 每个从节点,都根据自己对 master 复制数据的 offset,来设置一个选举时间,offset越大(复制数据越多)的从节点,选举时间越靠前,优先进行选举。所有的 master node 开始 slave 选举投票,给要进行选举的slave 进行投票,如果大部分 master node (N/2 + 1) 都投票给了某个从节点,那么选举通过,那个从节点可以切换成master。从节点执行主备切换,从节点切换为主节点。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
Java API Maven
如何使用Java开发抖音API接口?
在数字化时代,社交媒体平台如抖音成为生活的重要部分。本文详细介绍了如何用Java开发抖音API接口,从创建开发者账号、申请API权限、准备开发环境,到编写代码、测试运行及注意事项,全面覆盖了整个开发流程。
231 10
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
87 2
|
2月前
|
监控 Java API
如何使用Java语言快速开发一套智慧工地系统
使用Java开发智慧工地系统,采用Spring Cloud微服务架构和前后端分离设计,结合MySQL、MongoDB数据库及RESTful API,集成人脸识别、视频监控、设备与环境监测等功能模块,运用Spark/Flink处理大数据,ECharts/AntV G2实现数据可视化,确保系统安全与性能,采用敏捷开发模式,提供详尽文档与用户培训,支持云部署与容器化管理,快速构建高效、灵活的智慧工地解决方案。
|
12天前
|
移动开发 前端开发 Java
Java最新图形化界面开发技术——JavaFx教程(含UI控件用法介绍、属性绑定、事件监听、FXML)
JavaFX是Java的下一代图形用户界面工具包。JavaFX是一组图形和媒体API,我们可以用它们来创建和部署富客户端应用程序。 JavaFX允许开发人员快速构建丰富的跨平台应用程序,允许开发人员在单个编程接口中组合图形,动画和UI控件。本文详细介绍了JavaFx的常见用法,相信读完本教程你一定有所收获!
Java最新图形化界面开发技术——JavaFx教程(含UI控件用法介绍、属性绑定、事件监听、FXML)
|
1月前
|
Java 开发者 微服务
Spring Boot 入门:简化 Java Web 开发的强大工具
Spring Boot 是一个开源的 Java 基础框架,用于创建独立、生产级别的基于Spring框架的应用程序。它旨在简化Spring应用的初始搭建以及开发过程。
58 6
Spring Boot 入门:简化 Java Web 开发的强大工具
|
22天前
|
存储 JavaScript 前端开发
基于 SpringBoot 和 Vue 开发校园点餐订餐外卖跑腿Java源码
一个非常实用的校园外卖系统,基于 SpringBoot 和 Vue 的开发。这一系统源于黑马的外卖案例项目 经过站长的进一步改进和优化,提供了更丰富的功能和更高的可用性。 这个项目的架构设计非常有趣。虽然它采用了SpringBoot和Vue的组合,但并不是一个完全分离的项目。 前端视图通过JS的方式引入了Vue和Element UI,既能利用Vue的快速开发优势,
107 13
|
27天前
|
算法 Java API
如何使用Java开发获得淘宝商品描述API接口?
本文详细介绍如何使用Java开发调用淘宝商品描述API接口,涵盖从注册淘宝开放平台账号、阅读平台规则、创建应用并申请接口权限,到安装开发工具、配置开发环境、获取访问令牌,以及具体的Java代码实现和注意事项。通过遵循这些步骤,开发者可以高效地获取商品详情、描述及图片等信息,为项目和业务增添价值。
57 10
|
20天前
|
前端开发 Java 测试技术
java日常开发中如何写出优雅的好维护的代码
代码可读性太差,实际是给团队后续开发中埋坑,优化在平时,没有那个团队会说我专门给你一个月来优化之前的代码,所以在日常开发中就要多注意可读性问题,不要写出几天之后自己都看不懂的代码。
56 2
|
2月前
|
Java 程序员
Java社招面试题:& 和 && 的区别,HR的套路险些让我翻车!
小米,29岁程序员,分享了一次面试经历,详细解析了Java中&和&&的区别及应用场景,展示了扎实的基础知识和良好的应变能力,最终成功获得Offer。
84 14
|
2月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!

热门文章

最新文章