VLDB论文解读|一文剖析阿里云Lindorm数据库在DB for AI领域的探索

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
简介: 论文主要针对大规模监控场景下海量时序数据的存储、访问、分析和管理带来的挑战,描述了阿里云多模数据库 Lindorm 带来的一站式解决方案。

文/Lindorm AI团队


引言


日前,在加拿大温哥华召开的数据库领域顶会 VLDB 2023 上,来自阿里云瑶池数据库团队的论文《Lindorm TSDB: A Cloud-native Time-series Database for Large-scale Monitoring Systems》,成功入选VLDB Industrial Track(工业赛道)


论文背景


论文主要针对大规模监控场景下海量时序数据的存储、访问、分析和管理带来的挑战,描述了阿里云多模数据库 Lindorm 带来的一站式解决方案。其中,阿里云数据库团队在架构上大胆探索了数据库集成 AI 引擎的方式,让用户通过低门槛的 SQL 语句就可以对数据库内的时序数据进行训练和推理,并通过结合数据库成熟的对大规模数据的存储、访问和管理的技术,实现了分布式并行、批量和靠近数据的训练和推理优化。


在监控场景中,针对时序数据的智能分析如异常检测、时序预测等是一个普遍需求,现有做法通常需要在外部构建一个数据处理平台,将数据从数据库中拉出来后进行训练,然后将模型进行部署后对外提供时序分析服务。这种做法存在几个问题:


  1. 开发人员需要熟悉时序数据智能分析的相关算法和模型,编写代码实现模型训练和推理,具备较高的开发成本;
  2. 需要搭建一个复杂的数据处理平台,包括从数据库中拉取数据的组件、一个能高效处理大规模时序数据的机器学习平台以及对模型进行管理的组件,具备较高的运维成本;
  3. 从数据库中拉取数据进行模型训练和推理需要耗费大量带宽,并且随着时间推移,当时序数据发生特征变化时,需要频繁重新拉取数据进行模型更新,模型应用的时效性较差。


为了解决上述问题,我们在 Lindorm 数据库中集成了 Lindorm ML 组件,负责对时序数据进行 In-DB 的训练和推理。如下图所示,用户可以通过一个 CREATE MODEL 的 SQL 在数据库中创建(训练)一个机器学习模型,然后通过另外一个 SQL 函数使用模型对指定数据进行推理。


image.png


由于时序数据的智能分析具有时间线间独立的特点,Lindorm ML 组件利用了 Lindorm TSDB 对时序数据按照时间线维度进行存储的特性以及分布式的组织和管理方式将对应的机器学习模型也进行了分区(对用户透明),从而能够实现时间线维度的计算及分布式并行训练和推理优化。进一步的,在单机节点上,时序分析所需要的预处理和训练、推理等相关的算法被设计实现成 TSDB 流式执行引擎的算子,在时序数据从存储引擎中被扫描出来后就进行计算,再结合查询下推等特性,实现了靠近数据的计算优化,大大减少了数据在数据库内节点间的传输带宽消耗。


image.png


由于减少了从数据库中进行数据拉取的开销,通过和外部进行时序分析的实验对比,Lindorm ML 在训练和推理性能上有 2 倍以上的提升。更重要的是,Lindorm ML 内置了一些成熟的时序分析算法,用户直接通过几个 SQL 就能使用这些机器学习算法对自己的数据进行分析,门槛得到极大的下降。


image.png


架构再升级!Lindorm AI引擎支持大模型应用构建


随着 ChatGPT 带来的 AI 热潮及对模型即服务(Model as a Service)趋势的拥抱,Lindorm 团队将 Lindorm ML 组件升级成了 AI 引擎,除了对时序数据进行建模分析之外,还支持了预训练 AI 模型在数据库内的灵活导入,用于对数据库内存储的多模数据进行分析、理解和处理,从而对用户提供一站式 AI 数据服务。


结合大语言模型(LLM)的能力在企业内部知识库场景进行检索和问答是目前比较火热的 AI 应用,在这其中,除了 LLM 之外,还有两个比较关键的组件,其一是向量数据库,负责通过向量检索技术实现相似文本检索,为 LLM 补充上下文。还有一个则是对知识库文档进行加工和处理的服务,包括对文档进行预处理、切片及向量化(Embedding)。现有解决方案往往需要开发者基于一些流行框架如 LangChain 等来实现,尽管这些框架已经提供了基础的功能及对一些可选组件或服务的对接封装,仍然不是开箱即用的,直接基于它们来搭建一个知识问答应用是比较难真正落地的。一来这些框架具备一定的上手门槛,开发者首先需要学习框架的使用,并对其提供的功能进行深入对比(比如多种文本切片方法)和调优,这些预置的方法在效果上往往达不到生产落地的要求。此外,开发者还需要解决这个复杂架构中如向量数据库、Embedding服务的部署和运维的问题,以及知识库文档的更新等问题。针对这个场景, Lindorm AI 引擎提供了一站式的解决方案用户只需要在数据库中存入知识库文档,由数据库自动完成文档的预处理、切片、向量化等过程,通过一个 SQL 函数就能实现针对文档的语义检索,及结合 LLM 进行问答。利用数据库成熟的数据处理能力,在用户看来,只是针对知识库文档建了一个特殊的 AI 驱动的语义索引,索引建好之后就可以进行语义检索及问答,文档的新增、更新、删除这些过程对用户来说都是透明的。作为一个云服务, Lindorm AI 引擎提供的这个解决方案已经在云上业务中落地


除了私域数据知识问答场景之外,Lindorm AI 引擎还支持一站式多模态检索解决方案,包括通过文本检索图片,以及以图搜图等。和知识问答场景类似,用户不再需要和难以理解的向量以及多个服务打交道,只需要将图片本身(或图片的地址)存储于数据库中,数据库会自动利用 AI 模型的能力对图片进行一站式向量化、存储以及检索,大大简化业务的整体架构,提升开发和运维效率。


结语


从上述知识问答和多模态检索解决方案中可以看到,结合 AI 的能力,从某种意义上,使得数据库对于文本、图像等这类非结构化数据,实现了从简单的“存储和处理”到“理解和应用”的跃迁。在未来,除了数据本身之外,利用 AI 对数据资产进行理解和管理也会是我们继续探索的一个重要方向。正如Lindorm数据库的宗旨是“让数据存得起、看得见、算得好”,我们希望能让更多用户可以更好的用好数据,使得数据价值不断放大。



阿里云Lindorm数据库推出智能问答体验版试用活动啦!

🎉 秒级开通,仅60元/月。支持用户直接上传知识库文件,便捷构建具备私域知识+LLM的智能问答系统,快来试用吧!

点击链接即刻开启试用~

相关文章
|
5天前
|
JSON 分布式计算 数据处理
加速数据处理与AI开发的利器:阿里云MaxFrame实验评测
随着数据量的爆炸式增长,传统数据分析方法逐渐显现出局限性。Python作为数据科学领域的主流语言,因其简洁易用和丰富的库支持备受青睐。阿里云推出的MaxFrame是一个专为Python开发者设计的分布式计算框架,旨在充分利用MaxCompute的强大能力,提供高效、灵活且易于使用的工具,应对大规模数据处理需求。MaxFrame不仅继承了Pandas等流行数据处理库的友好接口,还通过集成先进的分布式计算技术,显著提升了数据处理的速度和效率。
|
17天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
77 12
|
7天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
6天前
|
人工智能 大数据 测试技术
自主和开放并举 探索下一代阿里云AI基础设施固件创新
12月13日,固件产业技术创新联盟产业峰会在杭州举行,阿里云主导的开源固件测试平台发布和PCIe Switch固件技术亮相,成为会议焦点。
|
3天前
|
人工智能 容灾 关系型数据库
【AI应用启航workshop】构建高可用数据库、拥抱AI智能问数
12月25日(周三)14:00-16:30参与线上闭门会,阿里云诚邀您一同开启AI应用实践之旅!
|
27天前
|
存储 人工智能 自然语言处理
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
|
20天前
|
人工智能 NoSQL MongoDB
阿里云与MongoDB庆祝合作五周年,展望AI赋能新未来
阿里云与MongoDB庆祝合作五周年,展望AI赋能新未来
|
15天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
29天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
22天前
|
人工智能 数据可视化 专有云
阿里云飞天企业版获评2024年AI云典型案例
近日,由全球数字经济大会组委会主办、中国信息通信研究院和中国通信企业协会承办的“云·AI·计算国际合作论坛”作为2024全球数字经济大会系列活动之一,在北京举办。论坛以“智启云端,算绘蓝图”为主题,围绕云·AI·计算产业发展、关键技术、最佳实践等展开交流讨论。阿里云飞天企业版异构算力调度平台获评2024年AI云典型案例。