操作系统原理实验2:进程调度(在Ubuntu虚拟机gcc编译环境下

简介: 操作系统原理实验2:进程调度(在Ubuntu虚拟机gcc编译环境下

实验目的与要求

通过一个简单的进程调度模拟程序的实现,加深对各种进程调度算法,进程切换的理解。

实验原理与内容

1、进程调度算法:采用动态最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)。

2、每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:

  1. 进程名----进程标示数ID;
  2. 优先数----Priority,优先数越大优先权越高;
  3. 到达时间----进程的到达时间为进程输入的时间;
  4. 进程还需要运行时间----AllTime,进程运行完毕AllTime =0;
  5. 已用CPU时间----CPUTime;
  6. 进程的阻塞时间StartBlock----表示当进程在运行StartBlock个时间片后,进程将进入阻塞状态;
  7. 进程的阻塞时间StartTime----表示当进程阻塞StartTime个时间片后,进程将进入就绪状态;
  8. 进程状态----State;
  9. 队列指针----Next,用来将PCB排成队列。

3、调度原则

  1. 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输入的时间;
  2. 进程的运行时间以时间片为单位进行计算;
  3. 进程在就绪队列中带一个时间片,优先数加1;
  4. 每个进程的状态可以是就绪R(Ready)、运行R(Run)、阻塞B(Block)、或完成F(Finish)四种状态之一;
  5. 就绪进程获得CPU后都只能运行一个时间片,用已占用CPU时间加1来表示;
  6. 如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减3,然后把它插入就绪队列等待CPU;
  7. 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查;
  8. 重复以上过程,直到所要进程都完成为止。

老师给的代码(具有不少错误的):

#include<stdio.h>

#include<stdlib.h>

enum STATE{ Ready=1,Run,Block,Finish };

struct PCB{

int ID; //进程名

int Priority; //优先数

int Time; //到达时间

int AllTime; //进程还需要运行时间

int CPUTime; //已用CPU时间

int StartBlock; //进程的进入阻塞时间

int StartTime; //进程的等待阻塞时间

STATE State; //进程状态

PCB* Next; //队列指针

}*ready=NULL,*p;

void Sort(){

// 建立对进程进行优先级排列函数

PCB *first, *second;

int insert=0;

if(ready==NULL||(p->Priority>ready->Priority)) //优先级最大者,插入队首

{

p->Next=ready;

ready=p;

}

else // 进程比较优先级,插入适当的位置中

{

first=ready;

second=first->Next;

while(second!=NULL)

{

if(p->Priority>second->Priority) //若插入进程比当前进程优先数大

{ //插入到当前进程前面

p->Next=second;

first->Next=p;

second=NULL;

insert=1;

}

else // 插入进程优先数最低,则插入到队尾

{

first=first->Next;

second=second->Next;

}

}

if(insert==0) first->Next=p;

}

}

void Input() {

// 输入进程控制块信息

int i,num;

//clrscr(); /*清屏*/

printf("\n 请输入进程数量:");

scanf("%d",&num);

for(i=0;i<num;i++)

{

p=(PCB*)malloc(sizeof(PCB)); //动态生成

p->ID=i+1;

printf("\n 输入进程%d的信息:\n",p->ID);

printf("\n 程优先数:");

scanf("%d",&p->Priority);

printf("\n 进程需要运行时间:");

scanf("%d",&p->AllTime);  

p->Time=3*i;

p->CPUTime=0;

p->StartBlock=0;

p->StartTime=0;

p->State=Ready;

p->Next=NULL;

printf("\n");

Sort(); /* 调用sort函数*/

}

}

int Length()

{

int l=0; PCB* pr=ready;

while(pr!=NULL)

{

l++;

pr=pr->Next;

}

return(l);

}

void OutPut(PCB * pr) //显示当前进程

{

printf("\n ID \t state \t Priority \t ALLTime \t CPUTime \n");

printf("%d\t",pr->ID);

printf("%d\t",pr->State);

printf("%d\t",pr->Priority);

printf("%d\t",pr->AllTime);

printf("%d\t",pr->CPUTime);

printf("\n");

}

void Check() // 建立进程查看函数

{

PCB* pr;

printf("\n **** 当前正在运行的进程是:\n"); //显示当前运行进程 

OutPut(p);

pr=ready;

printf("\n ****当前就绪队列状态为:\n"); //显示就绪队列状态

while(pr!=NULL)

{

OutPut(pr);

pr=pr->Next;

}

}

void Destroy() //建立进程撤消函数(进程运行结束,撤消进程)

{

printf("\n 进程 [%d] 已完成.\n",p->ID);

free(p);

}

void Running() // 建立进程就绪函数(进程运行时间到,置就绪状态

{

p->CPUTime++;

p->State=Run;

if(p->CPUTime==p->AllTime)

Destroy(); //调用Destroy函数

else

{

(p->Priority)--;

p->State=Ready;

Sort(); //调用sort函数

}

}

void main() //主函数

{

int len,h=0;

char ch;

Input();

len=Length();

while((len!=0)&&(ready!=NULL))

{

ch=getchar();

h++;

printf("\n 执行进程号:%d \n",h);

p=ready;

ready=p->Next;

p->Next=NULL;

p->State=Ready;

Check();

Running();

printf("\n 按任一键继续......");

ch=getchar();

}

printf("\n\n 进程已经完成.\n");

ch=getchar();

}

在老师代码中遇到的问题:

问题1:类型错误,定义进程状态的类型错误

 

解决:所以将STATE State;改为char state

问题2:队列指针错误类错误

 

解决方案:因为直接用gcc编译的代码,无法直接将pcb认为成一个类,所以将pcb* Next改为struct pcb* Next

问题3:因为直接用gcc编译的代码,无法直接将pcb认为成一个类,所以后面输入input函数的动态生成内存空间(p=(struct PCB *)malloc(sizeof(PCB));)会发生错误

 

解决方案:查阅很多资料后,发现只需要定义一下标识符的别名,然后进行使用就好,typedef struct是定义一个标识符及关键字的别名

所以将

struct PCB{

int ID; //进程名

int Priority; //优先数

int Time; //到达时间

int AllTime; //进程还需要运行时间

int CPUTime; //已用CPU时间

int StartBlock; //进程的进入阻塞时间

int StartTime; //进程的等待阻塞时间

STATE State; //进程状态

PCB* Next; //队列指针

}*ready=NULL,*p;

改为:

struct pcb{

int ID; //进程名

int Priority; //优先数

int Time; //到达时间

int AllTime; //进程还需要运行时间

int CPUTime; //已用CPU时间

int StartBlock; //进程的进入阻塞时间

int StartTime; //进程的等待阻塞时间

char State; //进程状态

struct pcb* Next; //队列指针

}*ready=NULL,*p;

typedef struct pcb PCB;

完善可用成功运行的代码:

#include<stdio.h>

#include<stdlib.h>

enum STATE{Ready=1,Run,Block,Finish };

struct pcb{

int ID; //进程名

int Priority; //优先数

int Time; //到达时间

int AllTime; //进程还需要运行时间

int CPUTime; //已用CPU时间

int StartBlock; //进程的进入阻塞时间

int StartTime; //进程的等待阻塞时间

char State; //进程状态

struct pcb* Next; //队列指针

}*ready=NULL,*p;

typedef struct pcb PCB;

void Sort(){

// 建立对进程进行优先级排列函数

PCB* first , * second;

int insert=0;

if(ready==NULL||(p->Priority>ready->Priority)) //优先级最大者,插入队首

{

p->Next=ready;

ready=p;

}

else // 进程比较优先级,插入适当的位置中

{

first=ready;

second=first->Next;

while(second!=NULL)

{

if(p->Priority>second->Priority) //若插入进程比当前进程优先数大

{ //插入到当前进程前面

p->Next=second;

first->Next=p;

second=NULL;

insert=1;

}

else // 插入进程优先数最低,则插入到队尾

{

first=first->Next;

second=second->Next;

}

}

if(insert==0) first->Next=p;

}

}

void Input() {

// 输入进程控制块信息

int i,num;

//clrscr(); /*清屏*/

printf("\n 请输入进程数量:");

scanf("%d",&num);

for(i=0;i<num;i++)

{

p=(struct PCB *)malloc(sizeof(PCB)); //动态生成

p->ID=i+1;

printf("\n 输入进程%d的信息:\n",p->ID);

printf("\n 进程优先数:");

scanf("%d",&p->Priority);

printf("\n 进程需要运行时间:");

scanf("%d",&p->AllTime);  

p->Time=3*i;

p->CPUTime=0;

p->StartBlock=0;

p->StartTime=0;

p->State=Ready;

p->Next=NULL;

printf("\n");

Sort(); /* 调用sort函数*/

}

}

int Length()

{

int l=0;

     PCB* pr=ready;

while(pr!=NULL)

{

l++;

pr=pr->Next;

}

return(l);

}

void OutPut(PCB * pr) //显示当前进程

{

printf("\n ID \t state \t Priority \t ALLTime \t CPUTime \n");

printf("%d\t",pr->ID);

printf("%d\t",pr->State);

printf("%d\t",pr->Priority);

printf("%d\t",pr->AllTime);

printf("%d\t",pr->CPUTime);

printf("\n");

}

void Check() // 建立进程查看函数

{

PCB* pr;

printf("\n **** 当前正在运行的进程是:\n"); //显示当前运行进程

OutPut(p);

pr=ready;

printf("\n ****当前就绪队列状态为:\n"); //显示就绪队列状态

while(pr!=NULL)

{

OutPut(pr);

pr=pr->Next;

}

}

void Destroy() //建立进程撤消函数(进程运行结束,撤消进程)

{

printf("\n 进程 [%d] 已完成.\n",p->ID);

free(p);

}

void Running() // 建立进程就绪函数(进程运行时间到,置就绪状态

{

p->CPUTime++;

p->State=Run;

if(p->CPUTime==p->AllTime)

Destroy(); //调用Destroy函数

else

{

(p->Priority)--;

p->State=Ready;

Sort(); //调用sort函数

}

}

void main() //主函数

{

int len,h=0;

char ch;

Input();

len=Length();

while((len!=0)&&(ready!=NULL))

{

ch=getchar();

h++;

printf("\n 执行进程号:%d \n",h);

p=ready;

ready=p->Next;

p->Next=NULL;

p->State=Ready;

Check();

Running();

printf("\n 按任一键继续......");

ch=getchar();

}

printf("\n\n 进程已经完成.\n");

ch=getchar();

}


相关文章
|
1天前
|
存储 缓存 内存技术
深入理解操作系统内存管理:原理与实践
【5月更文挑战第28天】 在现代计算机系统中,操作系统的内存管理是确保系统高效、稳定运行的关键组成部分。本文将深入探讨操作系统内存管理的基本原理和实践技巧,包括内存分配、虚拟内存技术、分页机制以及内存优化策略等内容。通过对这些概念和技术的详细解析,读者将能够更好地理解操作系统如何管理和优化内存资源,从而提高计算机系统的性能和稳定性。
|
1天前
|
存储 Java 调度
Java多线程基础-1:通俗简介操作系统之进程的管理与调度
操作系统是一个复杂的软件,具备许多功能。其中,进程的管理与调度是与我们密切相关的。本文将对操作系统功能中进程管理与调度作出介绍。
12 0
|
2天前
|
算法 调度
深入理解操作系统之进程调度算法的设计与实现
【5月更文挑战第27天】 在多任务处理的现代操作系统中,进程调度算法是核心组件之一,负责决定哪个进程将获得CPU资源。本文不仅探讨了几种经典的进程调度算法,包括先来先服务(FCFS)、短作业优先(SJF)和轮转调度(RR),还分析了各自的优势、劣势及适用场景。此外,文章将深入讨论如何根据系统需求设计自定义调度算法,并提供了基于伪代码的实现示例。最后,通过模拟实验比较了这些算法的性能,以指导读者在实际操作系统设计时的选择与优化。
|
2天前
|
机器学习/深度学习 监控 调度
深度学习在图像识别中的应用与挑战深入理解操作系统中的进程调度策略
【5月更文挑战第27天】 随着人工智能技术的飞速发展,深度学习已经成为图像识别领域的核心技术。本文将探讨深度学习在图像识别中的应用,以及在实际应用中所面临的挑战。我们将介绍深度学习的基本原理,以及如何将其应用于图像识别任务中。此外,我们还将讨论在实际应用中可能遇到的一些问题,如数据不平衡、模型过拟合等,并提出相应的解决方案。
|
2天前
|
机器学习/深度学习 人工智能 负载均衡
深入理解操作系统之进程管理与调度优化
【5月更文挑战第27天】 本文旨在探索操作系统的核心机制之一——进程管理,特别是进程调度的策略与优化。通过分析不同调度算法的特点、性能指标和应用场景,我们揭示了现代操作系统在多核处理器环境下面临的挑战及应对策略。文章不仅总结了经典的调度理论,还讨论了实时性、能效比以及用户体验等维度下的调度优化方法。此外,结合最新的研究动态,探讨了机器学习技术如何被整合进进程调度策略中,以实现更为智能和自适应的资源管理。
|
2天前
|
算法 调度 虚拟化
深入理解操作系统的进程调度策略
【5月更文挑战第27天】 在现代操作系统的核心功能中,进程调度策略是维护系统稳定运行和资源有效分配的关键。本文将探讨操作系统中不同的进程调度算法,包括它们的原理、优势、局限性以及在实际系统中的应用场景。通过对先进先出(FIFO)、最短作业优先(SJF)和轮转(RR)等经典调度算法的分析,结合多级反馈队列和实时调度算法的讨论,本文旨在为读者提供一个全面的视角来理解操作系统如何管理进程调度,保证系统的高效性和响应性。
|
2天前
|
算法 调度 UED
深入理解操作系统:进程管理与调度策略
【5月更文挑战第27天】 在现代操作系统的核心,进程管理是维持系统稳定运行和高效处理任务的关键组成部分。本文旨在探讨操作系统中进程的概念、生命周期以及进程调度的策略。通过分析不同操作系统如何管理和调度进程,我们将揭示它们对系统性能的影响,并讨论在设计高效调度算法时面临的挑战。文章的焦点在于对先进先出(FIFO)、最短作业优先(SJF)和多级反馈队列(MLFQ)三种调度策略进行比较研究,以展现它们在不同应用场景下的优势和局限。
|
2天前
|
并行计算 安全 大数据
深入理解操作系统内存管理:原理与实践
【5月更文挑战第27天】 在现代计算机系统中,操作系统的内存管理是确保系统高效、稳定运行的关键组成部分。本文旨在深入剖析操作系统内存管理的基本原理,并结合具体案例探讨内存管理的实践应用。文章首先介绍内存管理的基本概念,包括地址空间、虚拟内存和物理内存。随后,详细阐述不同的内存分配策略,如首次适应、最佳适应和伙伴系统,并分析各自的优势与局限性。文章还将探讨分页和分段机制的原理及其在现代操作系统中的应用,并通过实际代码示例展示如何在Linux内核中实现内存管理的关键技术。最后,讨论当前内存管理面临的挑战和未来可能的发展趋势。
|
2天前
|
算法 调度
深入理解操作系统的进程调度策略
【5月更文挑战第27天】 在现代操作系统中,进程调度策略的选择对系统性能有着至关重要的影响。本文将探讨操作系统中常见的进程调度算法及其优缺点,并分析如何根据不同的应用场景选择合适的调度策略。通过对比先来先服务(FCFS)、短作业优先(SJF)和轮询调度(RR),我们深入了解每种策略背后的设计哲学及其在实际应用中的表现。
|
2天前
|
调度 开发者
深入理解操作系统中的进程调度策略
【5月更文挑战第27天】 在多任务操作系统中,进程调度策略是决定系统性能和响应速度的关键因素之一。本文将深入探讨现代操作系统中常用的进程调度策略,包括先来先服务(FCFS)、短作业优先(SJF)、轮转(Round Robin)以及多级反馈队列(Multilevel Feedback Queue)。我们将分析每种策略的工作原理、优缺点以及适用场景,帮助读者理解如何根据不同的应用需求选择合适的进程调度方法。