基于Docker搭建大数据集群(四)Spark部署

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生网关 MSE Higress,422元/月
简介: 基于Docker搭建大数据集群(四)Spark部署
主要内容
  • spark部署
前提
  • zookeeper正常使用
  • JAVA_HOME环境变量
  • HADOOP_HOME环境变量
安装包

微云下载 | tar包目录下

  • Spark2.4.4

一、环境准备

上传到docker镜像

docker cp spark-2.4.4-bin-hadoop2.7.tar.gz cluster-master:/root/tar

解压

tar xivf spark-2.4.4-bin-hadoop2.7.tar.gz -C /opt/hadoop

二、配置文件

spark-env.sh

SPARK_LOCAL_DIRS=/opt/spark/spark-2.4.4-bin-hadoop2.7
HADOOP_CONF_DIR=/opt/hadoop/hadoop-2.7.7/etc/hadoop
YARN_CONF_DIR=/opt/hadoop/hadoop-2.7.7/etc/hadoop
JAVA_HOME=/opt/jdk/jdk1.8.0_221
export SPARK_MASTER_IP=cluster-master
export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=172.15.0.2:2181
-Dspark.deploy.zookeeper.dir=/sparkmaster"

slaves

cluster-slave1
cluster-slave2
cluster-slave3

spark-default.conf

spark.eventLog.enabled          true
spark.eventLog.dir              hdfs://jinbill/spark/eventLog
spark.history.fs.logDirectory   hdfs://jinbill/spark/eventLog
spark.eventLog.compress         true

三、启动

start-all.sh

四、UI界面

因为网段不同,所以得加路由才能访问

  1. 打开cmd,需要管理员权限
  2. route add 172.15.0.0 mask 255.255.0.0 192.168.11.38 -p

Spark Master 访问地址Spark Slave1 访问地址Spark Slave2 访问地址Spark Slave3 访问地址Spark 历史任务 访问地址


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
187 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
网络安全 Docker 容器
|
3月前
|
安全 Docker 容器
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
181 56
|
1月前
|
Prometheus 监控 Cloud Native
如何使用Prometheus监控Docker Swarm集群的资源使用情况?
还可以根据实际需求进行进一步的配置和优化,如设置告警规则,当资源使用超出阈值时及时发出警报。通过这些步骤,能够有效地使用 Prometheus 对 Docker Swarm 集群的资源进行监控和管理。
72 8
|
1月前
|
Prometheus 监控 Cloud Native
如何监控Docker Swarm集群的性能?
如何监控Docker Swarm集群的性能?
123 8
|
1月前
|
监控 Docker 容器
Docker Swarm集群的扩展与缩容策略,涵盖其意义、方法、步骤及注意事项
本文深入探讨了Docker Swarm集群的扩展与缩容策略,涵盖其意义、方法、步骤及注意事项,旨在帮助用户高效管理集群资源,适应业务变化,确保服务稳定性和资源优化。
61 6
|
25天前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
46 0
|
2月前
|
SQL 存储 大数据
单机顶集群的大数据技术来了
大数据时代,分布式数仓如MPP成为热门技术,但其高昂的成本让人望而却步。对于多数任务,数据量并未达到PB级,单体数据库即可胜任。然而,由于SQL语法的局限性和计算任务的复杂性,分布式解决方案显得更为必要。esProc SPL作为一种开源轻量级计算引擎,通过高效的算法和存储机制,实现了单机性能超越集群的效果,为低成本、高效能的数据处理提供了新选择。
|
2月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
120 6