使用SNAP JAVA API处理Sentinel-1数据

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: SNAP软件使用Java语言开发,提供了Python接口snappy,官方教程中也多以Python接口进行示范。但是我在使用Python接口过程中,发现并不是很好用,你必须要同时懂Java语言才能很好地使用Python接口,在IDEA中使用Python接口的代码基本上没有提示,报错了也是Java的错误提示。而且,Java本来是运行在虚拟机上的语言,效率不高,再用Python包一层,更加降低了运行效率。

使用SNAP JAVA API处理Sentinel-1数据

SNAP软件使用Java语言开发,提供了Python接口snappy,官方教程中也多以Python接口进行示范。但是我在使用Python接口过程中,发现并不是很好用,你必须要同时懂Java语言才能很好地使用Python接口,在IDEA中使用Python接口的代码基本上没有提示,报错了也是Java的错误提示。而且,Java本来是运行在虚拟机上的语言,效率不高,再用Python包一层,更加降低了运行效率。

所以,对于我来说,SNAP的Python接口就是鸡肋,没有使用的必要。直接使用Java接口,方便程序直接进行调试,有问题可以直接去看源代码,解决了官方资料不足的问题。

SNAP GPF的使用范式

SNAP推荐使用GPF(Graph Processing Framework)进行数据处理。GPF的使用也很简单,首先基于Operation创建Product,然后写入Product。在写入过程中会自动执行Operation完成你想要的数据处理流程,处理的算法是封装在Operation中的。

使用GPF的好处是你可以进行多个Operation的流程处理,前一个处理结果直接进入后一个处理,不需要写入磁盘,可以减少磁盘IO带来的时间消耗。

对Sentinel-1 GRD数据的处理案例

下面以对Sentinel-1 GRD数据进行一系列预处理流程演示SNAP Java接口的使用。

预处理的流程包括:首先对GRD各个极化波进行段辐射校正输出后向散射系数(Sigma nought),然后进行数据裁剪,最后进行地形校正的。

下面是使用Better Java (Kotlin)进行entinel-1 GRD数据处理的源码。其中,GPF.createProduct方法需要传入Operation的名称和参数,这些信息都可以通过查看Java源代码的方式找到。

代码运行过程中需要下载DEM数据,可能会比较耗时。如果不对数据裁剪,由于原始数据太大,可能会造成内存溢出。我的笔记本根本跑不动。

package cn.demo

import java.nio.file.Paths
import org.apache.commons.io.FilenameUtils

import kotlin.collections.HashMap

import org.esa.snap.core.dataio.ProductIO
import org.esa.snap.core.gpf.GPF
import com.bc.ceres.core.PrintWriterConciseProgressMonitor

import org.locationtech.jts.io.WKTReader


fun main() {
    val srcPath =
    Paths.get("/Users/Demo/Desktop/S1A_IW_GRDH_1SDV_20200301T104455_20200301T104520_031481_03A00B_0A9F.zip")
    val srcProduct = ProductIO.readProduct(srcPath.toFile())

    val outDir = "/Users/Demo/Desktop"
    val baseName = FilenameUtils.getBaseName(srcPath.toString())
    GPF.getDefaultInstance().operatorSpiRegistry.loadOperatorSpis()
    for (polar in arrayOf("VV", "VH")) {
        // 首先进行辐射校正(CALIBRATION)
        // 对应是的org.esa.s1tbx.calibration.gpf.CalibrationOp类
        var parameters = HashMap<String, Any>()
        parameters["outputSigmaBand"] = true
        parameters["selectedPolarisations"] = polar
        val caliProduct = GPF.createProduct("Calibration", parameters, srcProduct)

        // 然后进行裁剪,如果不裁剪,图像太大,容易OutOfMemory
        // 对应的是org.esa.snap.core.gpf.common.SubsetOp类
        val wktRect = "POLYGON((108.175 33.873,108.782 33.873,108.782 33.129,108.175 33.129,108.175 33.873))"
        parameters["geoRegion"] = WKTReader().read(wktRect)
        parameters["bandNames"] = "Sigma0_${polar}"
        val subsetProduct = GPF.createProduct("Subset", parameters, caliProduct)


        // 然后进行地形校正(TERRAIN CORRECTION)
        // 对应的是org.esa.s1tbx.sar.gpf.geometric.RangeDopplerGeocodingOp
        val corrPath = "${outDir}/${baseName}_Corrected_${polar}"
        parameters.clear()
        parameters["pixelSpacingInMeter"] = 10.0
        parameters["sourceBands"] = "Sigma0_${polar}"
        val corrProduct = GPF.createProduct("Terrain-Correction", parameters, subsetProduct)
        ProductIO.writeProduct(
            corrProduct, corrPath, "GeoTIFF",
            PrintWriterConciseProgressMonitor(System.out)
        )

          // 最后进行对象销毁,释放内存空间
        caliProduct.dispose()
        subsetProduct.dispose()
        corrProduct.dispose()
    }
    srcProduct.dispose()
}
AI 代码解读
相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
目录
打赏
0
0
0
0
58
分享
相关文章
java常用数据判空、比较和类型转换
本文介绍了Java开发中常见的数据处理技巧,包括数据判空、数据比较和类型转换。详细讲解了字符串、Integer、对象、List、Map、Set及数组的判空方法,推荐使用工具类如StringUtils、Objects等。同时,讨论了基本数据类型与引用数据类型的比较方法,以及自动类型转换和强制类型转换的规则。最后,提供了数值类型与字符串互相转换的具体示例。
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
12天前
|
java怎么统计每个项目下的每个类别的数据
通过本文,我们详细介绍了如何在Java中统计每个项目下的每个类别的数据,包括数据模型设计、数据存储和统计方法。通过定义 `Category`和 `Project`类,并使用 `ProjectManager`类进行管理,可以轻松实现项目和类别的数据统计。希望本文能够帮助您理解和实现类似的统计需求。
54 17
利用 Java 代码获取淘宝关键字 API 接口
在数字化商业时代,精准把握市场动态与消费者需求是企业成功的关键。淘宝作为中国最大的电商平台之一,其海量数据中蕴含丰富的商业洞察。本文介绍如何通过Java代码高效、合规地获取淘宝关键字API接口数据,帮助商家优化产品布局、制定营销策略。主要内容包括: 1. **淘宝关键字API的价值**:洞察用户需求、优化产品标题与详情、制定营销策略。 2. **获取API接口的步骤**:注册账号、申请权限、搭建Java开发环境、编写调用代码、解析响应数据。 3. **注意事项**:遵守法律法规与平台规则,处理API调用限制。 通过这些步骤,商家可以在激烈的市场竞争中脱颖而出。
速卖通商品数据尽在掌握:揭秘高效利用API接口获取详情策略
速卖通(AliExpress)API助力电商数据处理与分析,提供商品搜索、价格监控等功能。开发者需注册账号、创建应用并获取API Key。常用接口包括商品搜索和详情API。调用时注意频率限制、数据延迟及错误处理。本文介绍全过程并附Python示例代码,帮助提升电商运营效率。
Java基础-常用API-Object类
继承是面向对象编程的重要特性,允许从已有类派生新类。Java采用单继承机制,默认所有类继承自Object类。Object类提供了多个常用方法,如`clone()`用于复制对象,`equals()`判断对象是否相等,`hashCode()`计算哈希码,`toString()`返回对象的字符串表示,`wait()`、`notify()`和`notifyAll()`用于线程同步,`finalize()`在对象被垃圾回收时调用。掌握这些方法有助于更好地理解和使用Java中的对象行为。
怎么通过API获取电竞赛事实时数据
选择合适的电竞数据API是开发电竞应用的关键。主流API包括OP.GG、Liquipedia、Stratz、Riot Games和熊猫比分,涵盖LOL、DOTA2等游戏的实时数据。注册并获取API密钥后,需仔细阅读文档,了解资源、请求方法、必需参数及响应格式。编写代码调用API时,注意优化请求频率,避免封禁。最后,通过Web界面或可视化工具展示数据,如React/D3.js、Tableau等。示例代码展示了如何使用熊猫比分API获取即将开始的比赛信息。
1688.item_search_shop API:开启电商数据新纪元
1688.item_search_shop API是阿里巴巴1688平台提供的核心接口之一,支持根据关键词搜索指定店铺的商品,并获取商品详情、图片、价格等信息。该API允许设定搜索结果排序方式,如按销量或价格排序,满足不同需求。开发者可将其集成到电商应用中,提升用户体验;市场分析人员可利用其进行趋势和竞争对手分析;供应链管理人员则能监控库存,优化策略。示例代码展示了如何使用Python调用该API,帮助开发者快速上手。这一API的推出标志着B2B电商领域商品搜索技术的重要进步,推动行业向更高效、智能的方向发展。
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
|
1月前
|
如何使用Java开发获得淘宝商品描述API接口?
本文详细介绍如何使用Java开发调用淘宝商品描述API接口,涵盖从注册淘宝开放平台账号、阅读平台规则、创建应用并申请接口权限,到安装开发工具、配置开发环境、获取访问令牌,以及具体的Java代码实现和注意事项。通过遵循这些步骤,开发者可以高效地获取商品详情、描述及图片等信息,为项目和业务增添价值。
79 10
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等