MySQL的Binlog原理

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL的Binlog原理

什么是二进制日志(binlog)

binlog是记录所有数据库表结构变更(例如CREATE、ALTER TABLE…)以及表数据修改(INSERT、UPDATE、DELETE…)的二进制日志。

binlog不会记录SELECT和SHOW这类操作,因为这类操作对数据本身并没有修改,但你可以通过查询通用日志来查看MySQL执行过的所有语句。

二进制日志包括两类文件:二进制日志索引文件(文件名后缀为.index)用于记录所有的二进制文件,二进制日志文件(文件名后缀为.00000*)记录数据库所有的DDL和DML(除了数据查询语句)语句事件。

什么是事务日志

innodb事务日志包括redo log和undo log。

undo log指事务开始之前, 在操作任何数据之前,首先将需操作的数据备份到一个地方

redo log指事务中操作的任何数据,将最新的数据备份到一个地方

事务日志的目的:实例或者介质失败,事务日志文件就能派上用场。

1.redo log不是随着事务的提交才写入的,而是在事务的执行过程中,便开始写入redo 中。具体 的落盘策略可以进行配置 防止在发生故障的时间点,尚有脏页未写入磁盘,在重启mysql服务的时候,根据redo log进行重做,从而达到事务的未入磁盘数据进行持久化这一特性。RedoLog是为了实现事务的持久性而出现的产物

2.undo log用来回滚行记录到某个版本。事务未提交之前,Undo保存了未提交之前的版本数据,Undo中的数据可作为数据旧版本快照供其他并发事务进行快照读是为了实现事务的原子性而出现的产物,在Mysql innodb存储引擎中用来实现多版本并发控制

Redolog知识补充

指定Redo log 记录在{datadir}/ib_logfile1&ib_logfile2 可通过innodb_log_group_home_dir 配置指定 目录存储

一旦事务成功提交且数据持久化落盘之后,此时Redo log中的对应事务数据记录就失去了意义,所 Redo log的写入是日志文件循环写入的

指定Redo log日志文件组中的数量 innodb_log_files_in_group 默认为2

指定Redo log每一个日志文件最大存储量innodb_log_file_size 默认48

指定Redo logcache/buffer中的buffer池大小innodb_log_buffer_size 默认16Redo buffer 持久化Redo log的策略, Innodb_flush_log_at_trx_commit

取值 0 每秒提交 Redo buffer --> Redo log OS cache -->flush cache to disk[可能丢失一秒的事务数据]

取值 1 默认值,每次事务提交执行Redo buffer --> Redo log OS cache -->flush cache to dis[最安全,性能最差的方式]

取值 2 每次事务提交执行Redo buffer --> Redo log OS cache 再每一秒执行 ->flush cache tdisk操作

快照读和当前读

快照读:SQL读取的数据是快照版本,也就是历史版本,普通的SELECT就是快照读 innodb快照读,数据的读取将由 cache(原本数据) + undo(事务修改过的数据) 两部分组成

当前读:SQL读取的数据是最新版本。通过锁机制来保证读取的数据无法通过其他事务进行修改 UPDATE、DELETE、INSERT、SELECT … LOCK IN SHARE MODE、SELECT … FOR UPDATE都是 当前读

Undo + Redo事务的简化过程

 假设有A、B两个数据,值分别为1,2,开始一个事务,事务的操作内容为:把1修改为3,2修改为4,那么实际的记录如下(简化):

  A.事务开始.
  B.记录A=1到undo log.
  C.修改A=3.
  D.记录A=3到redo log.
  E.记录B=2到undo log.
  F.修改B=4.
  G.记录B=4到redo log.
  H.将redo log写入磁盘。
  I.事务提交

二进制日志处理事务和非事务性语句的区别

在事务性语句(update)执行过程中,服务器将会进行额外的处理,在服务器执行时多个事务是并行执行的,为了把他们的记录在一起,需要引入事务日志的概念。在事务完成被提交的时候一同刷新到二进制日志。对于非事务性语句(insert,delete)的处理。遵循以下3条规则:

1)如果非事务性语句被标记为事务性,那么将被写入重做日志。

2)如果没有标记为事务性语句,而且重做日志中没有,那么直接写入二进制日志。

3)如果没有标记为事务性的,但是重做日志中有,那么写入重做日志。

注意如果在一个事务中有非事务性语句,那么将会利用规则2,优先将该影响非事务表语句直接写入二进制日志。

 

XA的概念

XA(分布式事务)规范主要定义了(全局)事务管理器(TM: Transaction Manager)和(局部)资源管理器(RM: Resource Manager)之间的接口。XA为了实现分布式事务,将事务的提交分成了两个阶段:也就是2PC (tow phase commit),XA协议就是通过将事务的提交分为两个阶段来实现分布式事务。

两阶段

1)prepare 阶段

事务管理器向所有涉及到的数据库服务器发出prepare"准备提交"请求,数据库收到请求后执行数据修改和日志记录等处理,处理完成后只是把事务的状态改成"可以提交",然后把结果返回给事务管理器。即:为prepare阶段,TM向RM发出prepare指令,RM进行操作,然后返回成功与否的信息给TM。

2)commit 阶段

事务管理器收到回应后进入第二阶段,如果在第一阶段内有任何一个数据库的操作发生了错误,或者事务管理器收不到某个数据库的回应,则认为事务失败,回撤所有数据库的事务。数据库服务器收不到第二阶段的确认提交请求,也会把"可以提交"的事务回撤。如果第一阶段中所有数据库都提交成功,那么事务管理器向数据库服务器发出"确认提交"请求,数据库服务器把事务的"可以提交"状态改为"提交完成"状态,然后返回应答。即:为事务提交或者回滚阶段,如果TM收到所有RM的成功消息,则TM向RM发出提交指令;不然则发出回滚指令。

  • 外部与内部XA

MySQL中的XA实现分为:外部XA和内部XA。前者是指我们通常意义上的分布式事务实现;后者是指单台MySQL服务器中,Server层作为TM(事务协调者,通常由binlog模块担当),而服务器中的多个数据库实例作为RM,而进行的一种分布式事务,也就是MySQL跨库事务;也就是一个事务涉及到同一个MySQL服务器中的两个innodb数据库(目前似乎只有innodb支持XA)。内部XA也可以用来保证redo和binlog的一致性问题。

事务日志与二进制日志的一致性问题

我们MySQL为了兼容其它非事务引擎的复制,在server层面引入了 binlog, 它可以记录所有引擎中的修改操作,因而可以对所有的引擎使用复制功能; 然而这种情况会导致redo log与binlog的一致性问题;MySQL通过内部XA机制解决这种一致性的问题

第一阶段:InnoDB prepare, write/sync redo log;binlog不作任何操作;

第二阶段:包含两步,1> write/sync Binlog; 2> InnoDB commit (commit in memory);

当然在5.6之后引入了组提交的概念,可以在IO性能上进行一些提升,但总体的执行顺序不会改变。

当第二阶段的第1步执行完成之后,binlog已经写入,MySQL会认为事务已经提交并持久化了(在这一步binlog就已经ready并且可以发送给订阅者了)。在这个时刻,就算数据库发生了崩溃,那么重启MySQL之后依然能正确恢复该事务。在这一步之前包含这一步任何操作的失败都会引起事务的rollback。

第二阶段的第2步大部分都是内存操作(注意这里的InnoDB commit不是事务的commit),比如释放锁,释放mvcc相关的read view等等。MySQL认为这一步不会发生任何错误,一旦发生了错误那就是数据库的崩溃,MySQL自身无法处理。这个阶段没有任何导致事务rollback的逻辑。在程序运行层面,只有这一步完成之后,事务导致变更才能通过API或者客户端查询体现出来。

下面的一张图,说明了MySQL在何时会将binlog发送给订阅者。

MySQL会在binlog落盘之后会立即将新增的binlog发送给订阅者以尽可能的降低主从延迟

如何开启mysql的binlog

vi /etc/my.cnf

log-bin=mysql-bin #添加这一行就ok

binlog-format=ROW #选择row模式

server_id=1 #配置mysql replaction需要定义,不能和canal的slaveId重复

Binlog常见格式

业内目前推荐使用的是row模式,准确性高,虽然说文件大,但是现在有SSD和万兆光纤网络,这些磁盘IO和网络IO都是可以接受的。

在innodb里其实又可以分为两部分,一部分在缓存中,一部分在磁盘上。这里业内有一个词叫做刷盘,就是指将缓存中的日志刷到磁盘上。跟刷盘有关的参数有两个个:sync_binlog和binlog_cache_size。这两个参数作用如下

binlog_cache_size: 二进制日志缓存部分的大小,默认值32k

sync_binlog=[N]: 表示每多少个事务写入缓冲,刷一次盘,默认值为0

注意两点:

(1)binlog_cache_size设过大,会造成内存浪费。binlog_cache_size设置过小,会频繁将缓冲日志写入临时文件。

(2)sync_binlog=0:表示刷新binlog时间点由操作系统自身来决定,操作系统自身会每隔一段时间就会刷新缓存数据到磁盘,这个性能最好。sync_binlog=1,代表每次事务提交时就会刷新binlog到磁盘,对性能有一定的影响。sync_binlog=N,代表每N个事务提交会进行一次binlog刷新。

另外,这里存在一个一致性问题,sync_binlog=N,数据库在操作系统宕机的时候,可能数据并没有同步到磁盘,于是再次重启数据库,会带来数据丢失问题。

mysql的binlog是多文件存储,定位一个LogEvent需要通过binlog filename +  binlog position,进行定位

table_map event & write_rows event

这两个event是在binlog_format=row的时候使用,设置binlog_format=row,然后创建一个测试表

CREATE TABLE `trow` ( `i` int(11) NOT NULL, `c` varchar(10) DEFAULT NULL, PRIMARY KEY (`i`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1`

执行语句INSERT INTO trow VALUES(1, NULL), (2, 'a'),这个语句会产生一个query event,一个table_map event、一个write_rows event以及一个xid event。

常用的开源框架原理

1.原理

  1. 框架模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议
  2. mysql master收到dump请求,开始推送binary log给slave(也就是canal)
  3. 框架解析binary log对象(原始为byte流)

2.框架

2.1、mysql-binlog-connector-java(https://github.com/shyiko/mysql-binlog-connector-java

目前开源的 CDC (change data capture)工具,如 Zendesk maxwell、Redhat debezium、LinkedIn Databus 等都底层依赖 mysql-binlog-connector-java 或者其前身 open-replicator

不需要独立部署

稳定性不是很好,时间久了会出现connetion lost的情况

2.2、canal (https://github.com/alibaba/canal

需要独立部署canal server服务

canal 已在阿里云推出商业化版本 数据传输服务DTS, 开通即用,免去部署维护的昂贵使用成本。DTS针对阿里云RDS、DRDS等产品进行了适配,解决了Binlog日志回收,主备切换、VPC网络切换等场景下的订阅高可用问题。同时,针对RDS进行了针对性的性能优化。

HA机制设计

canal的ha分为两部分,canal server和canal client分别有对应的ha(主备模式)实现

  • canal server:  为了减少对mysql dump的请求,不同server上的instance要求同一时间只能有一个处于running,其他的处于standby状态.
  • canal client: 为了保证有序性,一份instance同一时间只能由一个canal client进行get/ack/rollback操作,否则客户端接收无法保证有序

canal 1.1.1版本之后, 默认支持将canal server接收到的binlog数据直接投递到MQ, 目前默认支持的MQ系统有:

KafkaRocketMQ。1.1.3版本下修复了投递MQ模式,canal server HA在切换后不生效

参考文章:

https://agapple.iteye.com/blog/1796633


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
8天前
|
关系型数据库 MySQL Linux
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
|
9天前
|
SQL Java 关系型数据库
MySQL原理简介—3.生产环境的部署压测
本文介绍了Java系统和数据库在高并发场景下的压测要点: 1. 普通系统在4核8G机器上每秒能处理几百个请求 2. 高并发下数据库建议使用8核16G或更高配置的机器 3. 数据库部署后需进行基准压测,以评估其最大承载能力 4. QPS和TPS的区别及重要性 5. 压测时需关注IOPS、吞吐量、延迟 6. 除了QPS和TPS,还需监控CPU、内存、磁盘IO、网络带宽 7. 影响每秒可处理并发请求数的因素包括线程数、CPU、内存、磁盘IO和网络带宽 8. Sysbench是数据库压测工具,可构造测试数据并模拟高并发场景 9. 在增加线程数量的同时,必须观察机器的性能,确保各硬件负载在合理范围
113 72
|
11天前
|
SQL 存储 关系型数据库
MySQL原理简介—1.SQL的执行流程
本文介绍了MySQL驱动、数据库连接池及SQL执行流程的关键组件和作用。主要内容包括:MySQL驱动用于建立Java系统与数据库的网络连接;数据库连接池提高多线程并发访问效率;MySQL中的连接池维护多个数据库连接并进行权限验证;网络连接由线程处理,监听请求并读取数据;SQL接口负责执行SQL语句;查询解析器将SQL语句解析为可执行逻辑;查询优化器选择最优查询路径;存储引擎接口负责实际的数据操作;执行器根据优化后的执行计划调用存储引擎接口完成SQL语句的执行。整个流程确保了高效、安全地处理SQL请求。
131 75
|
10天前
|
存储 SQL 关系型数据库
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log、原理、写入过程;binlog与redolog区别、update语句的执行流程、两阶段提交、主从复制、三种日志的使用场景;查询日志、慢查询日志、错误日志等其他几类日志
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
|
7天前
|
SQL 存储 关系型数据库
MySQL原理简介—9.MySQL索引原理
本文详细介绍了MySQL索引的设计与使用原则,涵盖磁盘数据页的存储结构、页分裂机制、主键索引设计及查询过程、聚簇索引和二级索引的原理、B+树索引的维护、联合索引的使用规则、SQL排序和分组时如何利用索引、回表查询对性能的影响以及索引覆盖的概念。此外还讨论了索引设计的案例,包括如何处理where筛选和order by排序之间的冲突、低基数字段的处理方式、范围查询字段的位置安排,以及通过辅助索引来优化特定查询场景。总结了设计索引的原则,如尽量包含where、order by、group by中的字段,选择离散度高的字段作为索引,限制索引数量,并针对频繁查询的低基数字段进行特殊处理等。
MySQL原理简介—9.MySQL索引原理
|
5天前
|
存储 关系型数据库 MySQL
MySQL底层概述—6.索引原理
本文详细回顾了:索引原理、二叉查找树、平衡二叉树(AVL树)、红黑树、B-Tree、B+Tree、Hash索引、聚簇索引与非聚簇索引。
MySQL底层概述—6.索引原理
|
6天前
|
SQL 监控 关系型数据库
MySQL原理简介—12.MySQL主从同步
本文介绍了四种为MySQL搭建主从复制架构的方法:异步复制、半同步复制、GTID复制和并行复制。异步复制通过配置主库和从库实现简单的主从架构,但存在数据丢失风险;半同步复制确保日志复制到从库后再提交事务,提高了数据安全性;GTID复制简化了配置过程,增强了复制的可靠性和管理性;并行复制通过多线程技术降低主从同步延迟,保证数据一致性。此外,还讨论了如何使用工具监控主从延迟及应对策略,如强制读主库以确保即时读取最新数据。
MySQL原理简介—12.MySQL主从同步
|
8天前
|
SQL 缓存 关系型数据库
MySQL原理简介—7.redo日志的底层原理
本文介绍了MySQL中redo日志和undo日志的主要内容: 1. redo日志的意义:确保事务提交后数据不丢失,通过记录修改操作并在系统宕机后重做日志恢复数据。 2. redo日志文件构成:记录表空间号、数据页号、偏移量及修改内容。 3. redo日志写入机制:redo日志先写入Redo Log Buffer,再批量刷入磁盘文件,减少随机写以提高性能。 4. Redo Log Buffer解析:描述Redo Log Buffer的内存结构及刷盘时机,如事务提交、Buffer过半或后台线程定时刷新。 5. undo日志原理:用于事务回滚,记录插入、删除和更新前的数据状态,确保事务可完整回滚。
|
8天前
|
SQL 缓存 关系型数据库
MySQL原理简介—8.MySQL并发事务处理
这段内容深入探讨了SQL语句执行原理、事务并发问题、MySQL事务隔离级别及其实现机制、锁机制以及数据库性能优化等多个方面。
|
10天前
|
存储 SQL 缓存
MySQL原理简介—2.InnoDB架构原理和执行流程
本文介绍了MySQL中更新语句的执行流程及其背后的机制,主要包括: 1. **更新语句的执行流程**:从SQL解析到执行器调用InnoDB存储引擎接口。 2. **Buffer Pool缓冲池**:缓存磁盘数据,减少磁盘I/O。 3. **Undo日志**:记录更新前的数据,支持事务回滚。 4. **Redo日志**:确保事务持久性,防止宕机导致的数据丢失。 5. **Binlog日志**:记录逻辑操作,用于数据恢复和主从复制。 6. **事务提交机制**:包括redo日志和binlog日志的刷盘策略,确保数据一致性。 7. **后台IO线程**:将内存中的脏数据异步刷入磁盘。

热门文章

最新文章