ZooKeeper 工作、选举 原理

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: ZooKeeper 工作、选举 原理

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名服务等。Zookeeper是hadoop的一个子项目,其发展历程无需赘述。在分布式应用中,由于工程师不能很好地使用锁机制,以及基于消息的协调机制不适合在某些应用中使用,因此需要有一种可靠的、可扩展的、分布式的、可配置的协调机制来统一系统的状态。Zookeeper的目的就在于此。本文简单分析zookeeper的工作原理,对于如何使用zookeeper不是本文讨论的重点。

1 Zookeeper的基本概念

1.1 角色

Zookeeper中的角色主要有以下三类,如下表所示:

系统模型如图所示:

1.2 设计目的

1.最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。

2 .可靠性:具有简单、健壮、良好的性能,如果消息m被到一台服务器接受,那么它将被所有的服务器接受。

3 .实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口。

4 .等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。

5.原子性:更新只能成功或者失败,没有中间状态。

6 .顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。

2 ZooKeeper的工作原理

Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态

Zab协议保证:

如果leader以T1和T2的顺序广播,那么所有的Server必须先执行T1,再执行T2。

如果任意一个Server以T1、T2的顺序commit执行,其他所有的Server也必须以T1、T2的顺序执行。

为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。

每个Server在工作过程中有三种状态:

  • LOOKING:当前Server不知道leader是谁,正在搜寻
  • LEADING:当前Server即为选举出来的leader
  • FOLLOWING:leader已经选举出来,当前Server与之同步

2.1 选主流程

当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:

  1. 1 .选举线程由当前Server发起选举的线程担任,其主要功能是对投票结果进行统计,并选出推荐的Server
  2. 2 .选举线程首先向所有Server发起一次询问(包括自己);
  3. 3 .选举线程收到回复后,验证是否是自己发起的询问(验证zxid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息(id,zxid),并将这些信息存储到当次选举的投票记录表中;
  4. 4.  收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;
  5. 5.  线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数, 设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被选举出来。

通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1.

每个Server启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚启动的server还会从磁盘快照中恢复数据和会话信息,zk会记录事务日志并定期进行快照,方便在恢复时进行状态恢复。选主的具体流程图如下所示:

fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。其流程图如下所示:

2.2 同步流程

选完leader以后,zk就进入状态同步过程。把follower的数据同步给leader的过程:

  1. 1. leader等待server连接;
  2. 2 .Follower连接leader,将最大的zxid发送给leader;
  3. 3 .Leader根据follower的zxid确定同步点;
  4. 4 .完成同步后通知follower 已经成为uptodate状态;
  5. 5 .Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。

流程图如下所示:

2.3 工作流程

2.3.1 Leader工作流程

Leader主要有三个功能:

  1. 1 .恢复数据;
  2. 2 .维持与Learner的心跳,接收Learner请求并判断Learner的请求消息类型;
  3. 3 .Learner的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根据不同的消息类型,进行不同的处理。

PING消息是指Learner的心跳信息;REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;ACK消息是Follower的对提议的回复,超过半数的Follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。

Leader的工作流程简图如下所示,在实际实现中,流程要比下图复杂得多,启动了三个线程来实现功能。

2.3.2 Follower工作流程

Follower主要有四个功能:

  1. 1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);
  2. 2 .接收Leader消息并进行处理;
  3. 3 .接收Client的请求,如果为写请求,发送给Leader进行投票;
  4. 4 .返回Client结果。

Follower的消息循环处理如下几种来自Leader的消息:

  1. 1 .PING消息: 心跳消息;
  2. 2 .PROPOSAL消息:Leader发起的提案,要求Follower投票;
  3. 3 .COMMIT消息:服务器端最新一次提案的信息;
  4. 4 .UPTODATE消息:表明同步完成;
  5. 5 .REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息;
  6. 6 .SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。

Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。

对于observer的流程不再叙述,observer流程和Follower的唯一不同的地方就是observer不会参加leader发起的投票。

3、数据一致性与paxos 算法  

如何保持数据的一致性,这里有个原则就是:

  • 在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。

  • Paxos算法解决的什么问题呢,解决的就是保证每个节点执行相同的操作序列好吧,这还不简单,master维护一个全局写队列,所有写操作都必须 放入这个队列编号,那么无论我们写多少个节点,只要写操作是按编号来的,就能保证一致性。没错,就是这样,可是如果master挂了呢。

  • Paxos算法通过投票来对写操作进行全局编号,同一时刻,只有一个写操作被批准同时并发的写操作要去争取选票,只有获得过半数选票的写操作才会被 批准(所以永远只会有一个写操作得到批准),其他的写操作竞争失败只好再发起一轮投票,就这样,在日复一日年复一年的投票中,所有写操作都被严格编号排 序。编号严格递增,当一个节点接受了一个编号为100的写操作,之后又接受到编号为99的写操作(因为网络延迟等很多不可预见原因),它马上能意识到自己 数据不一致了,自动停止对外服务并重启同步过程。任何一个节点挂掉都不会影响整个集群的数据一致性(总2n+1台,除非挂掉大于n台)。

4.Zookeeper 监视(Watches) 简介

Zookeeper C API 的声明和描述在 include/zookeeper.h 中可以找到,另外大部分的 Zookeeper C API 常量、结构体声明也在 zookeeper.h 中,如果如果你在使用 C API 是遇到不明白的地方,最好看看 zookeeper.h,或者自己使用 doxygen 生成 Zookeeper C API 的帮助文档。

Zookeeper 中最有特色且最不容易理解的是监视(Watches)。Zookeeper 所有的读操作——getData(), getChildren(), 和 exists() 都 可以设置监视(watch),监视事件可以理解为一次性的触发器, 官方定义如下: a watch event is one-time trigger, sent to the client that set the watch, which occurs when the data for which the watch was set changes。对此需要作出如下理解:

  • (一次性触发)One-time trigger
    当设置监视的数据发生改变时,该监视事件会被发送到客户端,例如,如果客户端调用了 getData("/znode1", true) 并且稍后 /znode1 节点上的数据发生了改变或者被删除了,客户端将会获取到 /znode1 发生变化的监视事件,而如果 /znode1 再一次发生了变化,除非客户端再次对 /znode1 设置监视,否则客户端不会收到事件通知。
  • (发送至客户端)Sent to the client
    Zookeeper 客户端和服务端是通过 socket 进行通信的,由于网络存在故障,所以监视事件很有可能不会成功地到达客户端,监视事件是异步发送至监视者的,Zookeeper 本身提供了保序性(ordering guarantee):即客户端只有首先看到了监视事件后,才会感知到它所设置监视的 znode 发生了变化(a client will never see a change for which it has set a watch until it first sees the watch event). 网络延迟或者其他因素可能导致不同的客户端在不同的时刻感知某一监视事件,但是不同的客户端所看到的一切具有一致的顺序。
  • (被设置 watch 的数据)The data for which the watch was set
    这意味着 znode 节点本身具有不同的改变方式。你也可以想象 Zookeeper 维护了两条监视链表:数据监视和子节点监视(data watches and child watches) getData() and exists() 设置数据监视,getChildren() 设置子节点监视。 或者,你也可以想象 Zookeeper 设置的不同监视返回不同的数据,getData() 和 exists() 返回 znode 节点的相关信息,而 getChildren() 返回子节点列表。因此, setData() 会触发设置在某一节点上所设置的数据监视(假定数据设置成功),而一次成功的 create() 操作则会出发当前节点上所设置的数据监视以及父节点的子节点监视。一次成功的 delete() 操作将会触发当前节点的数据监视和子节点监视事件,同时也会触发该节点父节点的child watch。

Zookeeper 中的监视是轻量级的,因此容易设置、维护和分发。当客户端与 Zookeeper 服务器端失去联系时,客户端并不会收到监视事件的通知,只有当客户端重新连接后,若在必要的情况下,以前注册的监视会重新被注册并触发,对于开发人员来说 这通常是透明的。只有一种情况会导致监视事件的丢失,即:通过 exists() 设置了某个 znode 节点的监视,但是如果某个客户端在此 znode 节点被创建和删除的时间间隔内与 zookeeper 服务器失去了联系,该客户端即使稍后重新连接 zookeeper服务器后也得不到事件通知。

Watch事件类型:

ZOO_CREATED_EVENT:节点创建事件,需要watch一个不存在的节点,当节点被创建时触发,此watch通过zoo_exists()设置

ZOO_DELETED_EVENT:节点删除事件,此watch通过zoo_exists()或zoo_get()设置

ZOO_CHANGED_EVENT:节点数据改变事件,此watch通过zoo_exists()或zoo_get()设置

ZOO_CHILD_EVENT:子节点列表改变事件,此watch通过zoo_get_children()或zoo_get_children2()设置

ZOO_SESSION_EVENT:会话失效事件,客户端与服务端断开或重连时触发

ZOO_NOTWATCHING_EVENT:watch移除事件,服务端出于某些原因不再为客户端watch节点时触发

5.负载均衡策略

Ø  轮询(RoundRobin)将请求顺序循环地发到每个服务器。当其中某个服务器发生故障,AX就把其从顺序循环队列中拿出,不参加下一次的轮询,直到其恢复正常。

Ø  比率(Ratio):给每个服务器分配一个加权值为比例,根椐这个比例,把用户的请求分配到每个服务器。当其中某个服务器发生故障,AX就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

Ø  优先权(Priority):给所有服务器分组,给每个组定义优先权,将用户的请求分配给优先级最高的服务器组(在同一组内,采用预先设定的轮询或比率算法,分配用户的请求);当最高优先级中所有服务器或者指定数量的服务器出现故障,AX将把请求送给次优先级的服务器组。这种方式,实际为用户提供一种热备份的方式。

Ø  最少连接数(LeastConnection):AX会记录当前每台服务器或者服务端口上的连接数,新的连接将传递给连接数最少的服务器。当其中某个服务器发生故障,AX就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

Ø  最快响应时间(Fast Reponse time):新的连接传递给那些响应最快的服务器。当其中某个服务器发生故障,AX就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

以上为通用的负载均衡算法,还有一些算法根据不同的需求也可能会用到,例如:

Ø 哈希算法( hash):  将客户端的源地址,端口进行哈希运算,根据运算的结果转发给一台服务器进行处理,当其中某个服务器发生故障,就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

6.Zk在Dubbo中的作用

zk在dubbo中是服务注册与发现的注册中心,dubbo的调用过程是consumer和provider在启动的时候就和注册中心建立一个socket长连接。provider将自己的服务注册到注册中心上,注册中心将可用的提供者列表notify给consumer,consumer会将列表存储到本地缓存,consumer选举出一个要调用的提供者,去远程调用。zookeeper通过心跳机制可以检测挂掉的机器并将挂掉机器的ip和服务对应关系从列表中删除

  Dubbo的将注册中心进行抽象,是得它可以外接不同的存储媒介给注册中心提供服务,有ZooKeeper,Memcached,Redis等。

7.Zk常见问题

为什么使用了ZooKeeper作为存储媒介 ?

负载均衡,单注册中心的承载能力是有限的,在流量达到一定程度的时 候就需要分流,负载均衡就是为了分流而存在的,一个ZooKeeper群配合相应的Web应用就可以很容易达到负载均衡;

资源同步,单单有负载均衡还不 够,节点之间的数据和资源需要同步,ZooKeeper集群就天然具备有这样的功能;

命名服务,这个是zk专有的特性,将树状结构用于维护全局的服务地址列表,服务提供者在启动 的时候,向ZK上的指定节点/dubbo/${serviceName}/providers目录下写入自己的URL地址,这个操作就完成了服务的发布。 其他特性还有Mast选举,分布式锁等。

主流应用场景有哪些?

Zookeeper的主流应用场景实现思路(除去官方示例)


(1)配置管理

集中式的配置管理在应用集群中是非常常见的,一般商业公司内部都会实现一套集中的配置管理中心,应对不同的应用集群对于共享各自配置的需求,并且在配置变更时能够通知到集群中的每一个机器。


Zookeeper很容易实现这种集中式的配置管理,比如将APP1的所有配置配置到/APP1 znode下,APP1所有机器一启动就对/APP1这个节点进行监控(zk.exist("/APP1",true)),并且实现回调方法Watcher,那么在zookeeper上/APP1 znode节点下数据发生变化的时候,每个机器都会收到通知,Watcher方法将会被执行,那么应用再取下数据即可(zk.getData("/APP1",false,null));


以上这个例子只是简单的粗颗粒度配置监控,细颗粒度的数据可以进行分层级监控,这一切都是可以设计和控制的。    

(2)集群管理

应用集群中,我们常常需要让每一个机器知道集群中(或依赖的其他某一个集群)哪些机器是活着的,并且在集群机器因为宕机,网络断链等原因能够不在人工介入的情况下迅速通知到每一个机器。

为什么zookeeper集群的数目,一般为奇数个?

Leader选举算法采用了Paxos协议;

Paxos核心思想:当多数Server写成功,则任务数据写成功如果有3个Server,则两个写成功即可;如果有4或5个Server,则三个写成功即可。

Server数目一般为奇数(3、5、7)如果有3个Server,则最多允许1个Server挂掉;如果有4个Server,则同样最多允许1个Server挂掉由此,我们看出3台服务器和4台服务器的的容灾能力是一样的,所以为了节省服务器资源,一般我们采用奇数个数,作为服务器部署个数

参考文章:

zookeeper原理入门-阿里云开发者社区


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
6月前
|
监控 Dubbo Java
深入理解Zookeeper系列-2.Zookeeper基本使用和分布式锁原理
深入理解Zookeeper系列-2.Zookeeper基本使用和分布式锁原理
108 0
|
6月前
|
消息中间件 分布式计算 算法
深入理解Zookeeper系列-3.Zookeeper实现原理及Leader选举源码分析(上)
深入理解Zookeeper系列-3.Zookeeper实现原理及Leader选举源码分析
548 0
|
1月前
|
分布式计算 负载均衡 算法
Hadoop-31 ZooKeeper 内部原理 简述Leader选举 ZAB协议 一致性
Hadoop-31 ZooKeeper 内部原理 简述Leader选举 ZAB协议 一致性
28 1
|
1月前
|
分布式计算 监控 Hadoop
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
39 1
|
2月前
|
存储 负载均衡 算法
分布式-Zookeeper-Master选举
分布式-Zookeeper-Master选举
|
4月前
|
存储 数据库
zookeeper 集群环境搭建及集群选举及数据同步机制
zookeeper 集群环境搭建及集群选举及数据同步机制
72 2
|
6月前
|
NoSQL 中间件 API
分布式锁【数据库乐观锁实现的分布式锁、Zookeeper分布式锁原理、Redis实现的分布式锁】(三)-全面详解(学习总结---从入门到深化)(下)
分布式锁【数据库乐观锁实现的分布式锁、Zookeeper分布式锁原理、Redis实现的分布式锁】(三)-全面详解(学习总结---从入门到深化)
164 2
|
6月前
|
NoSQL Java API
分布式锁【数据库乐观锁实现的分布式锁、Zookeeper分布式锁原理、Redis实现的分布式锁】(三)-全面详解(学习总结---从入门到深化)(上)
分布式锁【数据库乐观锁实现的分布式锁、Zookeeper分布式锁原理、Redis实现的分布式锁】(三)-全面详解(学习总结---从入门到深化)
163 0
|
6月前
|
网络协议 中间件 数据库
Zookeeper学习系列【三】Zookeeper 集群架构、读写机制以及一致性原理(ZAB协议)
Zookeeper学习系列【三】Zookeeper 集群架构、读写机制以及一致性原理(ZAB协议)
262 0
|
6月前
|
存储 API
深入理解Zookeeper系列-4.Watcher原理
深入理解Zookeeper系列-4.Watcher原理
57 1