前端监控 SDK 的一些技术要点原理分析(上)

本文涉及的产品
云拨测,每月3000次拨测额度
简介: 前端监控 SDK 的一些技术要点原理分析

一个完整的前端监控平台包括三个部分:数据采集与上报、数据整理和存储、数据展示。

本文要讲的就是其中的第一个环节——数据采集与上报。下图是本文要讲述内容的大纲,大家可以先大致了解一下:

仅看理论知识是比较难以理解的,为此我结合本文要讲的技术要点写了一个简单的监控 SDK,可以用它来写一些简单的 DEMO,帮助加深理解。再结合本文一起阅读,效果更好。

性能数据采集

chrome 开发团队提出了一系列用于检测网页性能的指标:

  • FP(first-paint),从页面加载开始到第一个像素绘制到屏幕上的时间
  • FCP(first-contentful-paint),从页面加载开始到页面内容的任何部分在屏幕上完成渲染的时间
  • LCP(largest-contentful-paint),从页面加载开始到最大文本块或图像元素在屏幕上完成渲染的时间
  • CLS(layout-shift),从页面加载开始和其生命周期状态变为隐藏期间发生的所有意外布局偏移的累积分数

这四个性能指标都需要通过 PerformanceObserver 来获取(也可以通过 performance.getEntriesByName() 获取,但它不是在事件触发时通知的)。PerformanceObserver 是一个性能监测对象,用于监测性能度量事件。

FP

FP(first-paint),从页面加载开始到第一个像素绘制到屏幕上的时间。其实把 FP 理解成白屏时间也是没问题的。

测量代码如下:

const entryHandler = (list) => {        
    for (const entry of list.getEntries()) {
        if (entry.name === 'first-paint') {
            observer.disconnect()
        }
       console.log(entry)
    }
}
const observer = new PerformanceObserver(entryHandler)
// buffered 属性表示是否观察缓存数据,也就是说观察代码添加时机比事情触发时机晚也没关系。
observer.observe({ type: 'paint', buffered: true })

通过以上代码可以得到 FP 的内容:

{
    duration: 0,
    entryType: "paint",
    name: "first-paint",
    startTime: 359, // fp 时间
}

其中 startTime 就是我们要的绘制时间。

FCP

FCP(first-contentful-paint),从页面加载开始到页面内容的任何部分在屏幕上完成渲染的时间。对于该指标,"内容"指的是文本、图像(包括背景图像)、<svg>元素或非白色的<canvas>元素。

为了提供良好的用户体验,FCP 的分数应该控制在 1.8 秒以内。

测量代码:

const entryHandler = (list) => {        
    for (const entry of list.getEntries()) {
        if (entry.name === 'first-contentful-paint') {
            observer.disconnect()
        }
        console.log(entry)
    }
}
const observer = new PerformanceObserver(entryHandler)
observer.observe({ type: 'paint', buffered: true })

通过以上代码可以得到 FCP 的内容:

{
    duration: 0,
    entryType: "paint",
    name: "first-contentful-paint",
    startTime: 459, // fcp 时间
}

其中 startTime 就是我们要的绘制时间。

LCP

LCP(largest-contentful-paint),从页面加载开始到最大文本块或图像元素在屏幕上完成渲染的时间。LCP 指标会根据页面首次开始加载的时间点来报告可视区域内可见的最大图像或文本块完成渲染的相对时间。

一个良好的 LCP 分数应该控制在 2.5 秒以内。

测量代码:

const entryHandler = (list) => {
    if (observer) {
        observer.disconnect()
    }
    for (const entry of list.getEntries()) {
        console.log(entry)
    }
}
const observer = new PerformanceObserver(entryHandler)
observer.observe({ type: 'largest-contentful-paint', buffered: true })

通过以上代码可以得到 LCP 的内容:

{
    duration: 0,
    element: p,
    entryType: "largest-contentful-paint",
    id: "",
    loadTime: 0,
    name: "",
    renderTime: 1021.299,
    size: 37932,
    startTime: 1021.299,
    url: "",
}

其中 startTime 就是我们要的绘制时间。element 是指 LCP 绘制的 DOM 元素。

FCP 和 LCP 的区别是:FCP 只要任意内容绘制完成就触发,LCP 是最大内容渲染完成时触发。

LCP 考察的元素类型为:

  • <img>元素
  • 内嵌在<svg>元素内的<image>元素
  • <video>元素(使用封面图像)
  • 通过url())函数(而非使用CSS 渐变)加载的带有背景图像的元素
  • 包含文本节点或其他行内级文本元素子元素的块级元素

CLS

CLS(layout-shift),从页面加载开始和其生命周期状态变为隐藏期间发生的所有意外布局偏移的累积分数。

布局偏移分数的计算方式如下:

布局偏移分数 = 影响分数 * 距离分数

影响分数测量不稳定元素对两帧之间的可视区域产生的影响。

距离分数指的是任何不稳定元素在一帧中位移的最大距离(水平或垂直)除以可视区域的最大尺寸维度(宽度或高度,以较大者为准)。

CLS 就是把所有布局偏移分数加起来的总和

当一个 DOM 在两个渲染帧之间产生了位移,就会触发 CLS(如图所示)。

上图中的矩形从左上角移动到了右边,这就算是一次布局偏移。同时,在 CLS 中,有一个叫会话窗口的术语:一个或多个快速连续发生的单次布局偏移,每次偏移相隔的时间少于 1 秒,且整个窗口的最大持续时长为 5 秒。

例如上图中的第二个会话窗口,它里面有四次布局偏移,每一次偏移之间的间隔必须少于 1 秒,并且第一个偏移和最后一个偏移之间的时间不能超过 5 秒,这样才能算是一次会话窗口。如果不符合这个条件,就算是一个新的会话窗口。可能有人会问,为什么要这样规定?其实这是 chrome 团队根据大量的实验和研究得出的分析结果 Evolving the CLS metric

CLS 一共有三种计算方式:

  1. 累加
  2. 取所有会话窗口的平均数
  3. 取所有会话窗口中的最大值

累加

也就是把从页面加载开始的所有布局偏移分数加在一起。但是这种计算方式对生命周期长的页面不友好,页面存留时间越长,CLS 分数越高。

取所有会话窗口的平均数

这种计算方式不是按单个布局偏移为单位,而是以会话窗口为单位。将所有会话窗口的值相加再取平均值。但是这种计算方式也有缺点。

从上图可以看出来,第一个会话窗口产生了比较大的 CLS 分数,第二个会话窗口产生了比较小的 CLS 分数。如果取它们的平均值来当做 CLS 分数,则根本看不出来页面的运行状况。原来页面是早期偏移多,后期偏移少,现在的平均值无法反映出这种情况。

取所有会话窗口中的最大值

这种方式是目前最优的计算方式,每次只取所有会话窗口的最大值,用来反映页面布局偏移的最差情况。详情请看 Evolving the CLS metric

下面是第三种计算方式的测量代码:

let sessionValue = 0
let sessionEntries = []
const cls = {
    subType: 'layout-shift',
    name: 'layout-shift',
    type: 'performance',
    pageURL: getPageURL(),
    value: 0,
}
const entryHandler = (list) => {
    for (const entry of list.getEntries()) {
        // Only count layout shifts without recent user input.
        if (!entry.hadRecentInput) {
            const firstSessionEntry = sessionEntries[0]
            const lastSessionEntry = sessionEntries[sessionEntries.length - 1]
            // If the entry occurred less than 1 second after the previous entry and
            // less than 5 seconds after the first entry in the session, include the
            // entry in the current session. Otherwise, start a new session.
            if (
                sessionValue
                && entry.startTime - lastSessionEntry.startTime < 1000
                && entry.startTime - firstSessionEntry.startTime < 5000
            ) {
                sessionValue += entry.value
                sessionEntries.push(formatCLSEntry(entry))
            } else {
                sessionValue = entry.value
                sessionEntries = [formatCLSEntry(entry)]
            }
            // If the current session value is larger than the current CLS value,
            // update CLS and the entries contributing to it.
            if (sessionValue > cls.value) {
                cls.value = sessionValue
                cls.entries = sessionEntries
                cls.startTime = performance.now()
                lazyReportCache(deepCopy(cls))
            }
        }
    }
}
const observer = new PerformanceObserver(entryHandler)
observer.observe({ type: 'layout-shift', buffered: true })

在看完上面的文字描述后,再看代码就好理解了。一次布局偏移的测量内容如下:

{
  duration: 0,
  entryType: "layout-shift",
  hadRecentInput: false,
  lastInputTime: 0,
  name: "",
  sources: (2) [LayoutShiftAttribution, LayoutShiftAttribution],
  startTime: 1176.199999999255,
  value: 0.000005752046026677329,
}

代码中的 value 字段就是布局偏移分数。

目录
相关文章
|
1天前
|
自然语言处理 前端开发 Java
深入浅出JVM(六)之前端编译过程与语法糖原理
深入浅出JVM(六)之前端编译过程与语法糖原理
|
3天前
|
前端开发 测试技术
前端自动化测试中的快照测试原理
快照测试用于前端自动化测试,通过比较当前应用状态与预存预期快照来检测UI变化。流程包括设置测试环境、捕获屏幕快照、保存预期快照、比较快照及处理差异。当快照比较出现差异时,测试工程师审查判断是否为预期变化或错误,确保应用一致性。这种方法在重构、样式更改和跨浏览器测试时提供有效回归测试,减少手动验证工作。
|
9天前
|
缓存 移动开发 前端开发
【专栏:HTML与CSS前端技术趋势篇】HTML与CSS在PWA(Progressive Web Apps)中的应用
【4月更文挑战第30天】PWA(Progressive Web Apps)结合现代Web技术,提供接近原生应用的体验。HTML在PWA中构建页面结构和内容,响应式设计、语义化标签、Manifest文件和离线页面的创建都离不开HTML。CSS则用于定制主题样式、实现动画效果、响应式布局和管理字体图标。两者协同工作,保证PWA在不同设备和网络环境下的快速、可靠和一致性体验。随着前端技术进步,HTML与CSS在PWA中的应用将更广泛。
|
9天前
|
前端开发 JavaScript 开发者
【专栏:HTML与CSS前端技术趋势篇】前端框架(React/Vue/Angular)与HTML/CSS的结合使用
【4月更文挑战第30天】前端框架React、Vue和Angular助力UI开发,通过组件化、状态管理和虚拟DOM提升效率。这些框架与HTML/CSS结合,使用模板语法、样式管理及组件化思想。未来趋势包括框架简化、Web组件标准采用和CSS在框架中角色的演变。开发者需紧跟技术发展,掌握新工具,提升开发效能。
|
9天前
|
前端开发 JavaScript UED
【专栏:HTML 与 CSS 前端技术趋势篇】Web 性能优化:CSS 与 HTML 的未来趋势
【4月更文挑战第30天】本文探讨了CSS和HTML在Web性能优化中的关键作用,包括样式表压缩、选择器优化、DOM操作减少等策略。随着未来趋势发展,CSS模块系统、自定义属性和响应式设计将得到强化,HTML新特性也将支持复杂组件构建。同时,应对浏览器兼容性、代码复杂度和性能功能平衡的挑战是优化过程中的重要任务。通过案例分析和持续创新,我们可以提升Web应用性能,创造更好的用户体验。
|
9天前
|
移动开发 前端开发 UED
【专栏:HTML与CSS前端技术趋势篇】渐进式增强与优雅降级在前端开发中的实践
【4月更文挑战第30天】前端开发中的渐进式增强和优雅降级是确保跨浏览器、跨设备良好用户体验的关键策略。渐进式增强是从基础功能开始,逐步增加高级特性,保证所有用户能访问基本内容;而优雅降级则是从完整版本出发,向下兼容,确保低版本浏览器仍能使用基本功能。实践中,遵循HTML5/CSS3规范,使用流式布局和响应式设计,检测浏览器特性,并提供备选方案,都是实现这两种策略的有效方法。选择合适策略优化网站,提升用户体验。
|
9天前
|
前端开发 开发者 UED
【专栏:HTML与CSS前端技术趋势篇】网页设计中的CSS Grid与Flexbox之争
【4月更文挑战第30天】本文对比了CSS Grid和Flexbox两种布局工具。Flexbox擅长一维布局,简单易用,适合导航栏和列表;CSS Grid则适用于二维布局,能创建复杂结构,适用于整个页面布局。两者各有优势,在响应式设计中都占有一席之地。随着Web标准发展,它们的结合使用将成为趋势,开发者需掌握两者以应对多样化需求。
|
9天前
|
前端开发 JavaScript 搜索推荐
【专栏:HTML 与 CSS 前端技术趋势篇】HTML 与 CSS 在 Web 组件化中的应用
【4月更文挑战第30天】本文探讨了HTML和CSS在Web组件化中的应用及其在前端趋势中的重要性。组件化提高了代码复用、维护性和扩展性。HTML提供组件结构,语义化标签增进可读性,支持用户交互;CSS实现样式封装、布局控制和主题定制。案例展示了导航栏、卡片和模态框组件的创建。响应式设计、动态样式、CSS预处理器和Web组件标准等趋势影响HTML/CSS在组件化中的应用。面对兼容性、代码复杂度和性能优化挑战,需采取相应策略。未来,持续发掘HTML和CSS潜力,推动组件化开发创新,提升Web应用体验。
|
18天前
|
JavaScript Java Maven
云效产品使用常见问题之android sdk 构建出aar后,上传到私有maven仓库失败如何解决
云效作为一款全面覆盖研发全生命周期管理的云端效能平台,致力于帮助企业实现高效协同、敏捷研发和持续交付。本合集收集整理了用户在使用云效过程中遇到的常见问题,问题涉及项目创建与管理、需求规划与迭代、代码托管与版本控制、自动化测试、持续集成与发布等方面。
|
4月前
|
安全 开发工具 Android开发
几个Flutter常见诊断错误与解决Android toolchain - develop for Android devices X Unable to locate Android SDK
几个Flutter常见诊断错误与解决Android toolchain - develop for Android devices X Unable to locate Android SDK
401 0