torch.jit.script 与 torch.jit.trace

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: torch.jit.script 与 torch.jit.trace

torch.jit.script 与 torch.jit.trace

torch.jit.script torch.jit.trace 是 PyTorch 中用于将模型转换为脚本或跟踪模型执行的工具。

它们是 PyTorch 的即时编译(Just-in-Time Compilation)模块的一部分,用于提高模型的执行效率并支持模型的部署。

torch.jit.script

torch.jit.script 是将模型转换为脚本的函数。

它接受一个 PyTorch 模型作为输入,并将其转换为可运行的脚本。转换后的脚本可以像普通的 Python 函数一样调用,也可以保存到磁盘并在没有 PyTorch 依赖的环境中执行。

这种转换的好处是可以减少模型执行过程中的开销,因为它消除了 Python 解释器的开销。

示例:

import torch
# 定义模型
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv = torch.nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.fc = torch.nn.Linear(64 * 8 * 8, 10)
    def forward(self, x):
        x = self.conv(x)
        x = torch.nn.functional.relu(x)
        x = x.view(-1, 64 * 8 * 8)
        x = self.fc(x)
        return x
model = MyModel()
# 将模型转换为Torch脚本模块
scripted_model = torch.jit.script(model)
# 调用
output = scripted_model(torch.randn(1, 3, 32, 32))
print(output)
# 保存模型
torch.jit.save(scripted_model, './model/Test/scripted_model.pth')

torch.jit.trace

torch.jit.trace 是跟踪模型执行的函数。

它接受一个模型和一个示例输入,并记录模型在给定输入上的执行过程,然后返回一个跟踪模型。

跟踪模型可以看作是一个具有相同功能的脚本模型,但它还保留了原始模型的动态特性,可以使用更多高级特性,如动态图和控制流。

示例:

import torch
# 定义模型
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv = torch.nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.fc = torch.nn.Linear(64 * 8 * 8, 10)
    def forward(self, x):
        x = self.conv(x)
        x = torch.nn.functional.relu(x)
        x = x.view(-1, 64 * 8 * 8)
        x = self.fc(x)
        return x
model = MyModel()
# 将模型转换为Torch脚本模块
traced_model = torch.jit.trace(model, torch.randn(1, 3, 32, 32))
# 调用
output = traced_model(torch.randn(1, 3, 32, 32))
print(output)
# 保存模型
torch.jit.save(traced_model, './model/Test/traced_model.pth')

注意

由于 torch.jit.trace 方法只跟踪了给定输入张量的执行路径,因此在使用转换后的模块对象进行推理时,输入张量的维度和数据类型必须与跟踪时使用的相同。

torch.jit.save

使用 torch.jit.scripttorch.jit.trace 转换后的模块对象可以直接用于推理,也可以使用 torch.jit.save 方法将其保存到文件中,以便在需要时加载模型。

torch.jit.load

使用 torch.jit.load 函数可以加载 PyTorch 模型,该函数可以接收一个模型文件路径或一个文件对象作为输入参数。具体步骤如下:

  • 加载模型文件:
import torch
model = torch.jit.load("model.pt")

这将加载名为 model.pt 的模型文件。

  • 加载模型文件并指定设备:
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.jit.load("model.pt", map_location=device)

这将加载名为 model.pt 的模型文件,并将其放置在可用的 CUDA 设备上。

  • 加载模型文件并使用 eval 模式:
import torch
model = torch.jit.load("model.pt")
model.eval()

这将加载名为 model.pt 的模型文件,并将其转换为评估模式。

注意:

如果模型使用了特定的设备,例如 CUDA,那么在加载模型时需要确保该设备可用。如果设备不可用,则需要使用 map_location 参数将模型映射到可用的设备上。

Code

import torch
# 定义模型
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv = torch.nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.fc = torch.nn.Linear(64 * 8 * 8, 10)
    def forward(self, x):
        x = self.conv(x)
        x = torch.nn.functional.relu(x)
        x = x.view(-1, 64 * 8 * 8)
        x = self.fc(x)
        return x
model = MyModel()
print(model)
# 将模型转换为Torch脚本模块
scripted_model = torch.jit.script(model)
traced_model = torch.jit.trace(model, torch.randn(1, 3, 32, 32))
# 调用
output_scripted = scripted_model(torch.randn(1, 3, 32, 32))
output_traced = traced_model(torch.randn(1, 3, 32, 32))
# 保存模型
torch.jit.save(scripted_model, './model/Test/scripted_model.pth')
torch.jit.save(traced_model, './model/Test/traced_model.pth')
# 加载模型
load_scripted_model = torch.jit.load('./model/Test/scripted_model.pth')
print(load_scripted_model)
load_traced_model = torch.jit.load('./model/Test/traced_model.pth')
print(load_traced_model)
MyModel(
  (conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (fc): Linear(in_features=4096, out_features=10, bias=True)
)
RecursiveScriptModule(
  original_name=MyModel
  (conv): RecursiveScriptModule(original_name=Conv2d)
  (fc): RecursiveScriptModule(original_name=Linear)
)
RecursiveScriptModule(
  original_name=MyModel
  (conv): RecursiveScriptModule(original_name=Conv2d)
  (fc): RecursiveScriptModule(original_name=Linear)
)

说明:

  • RecursiveScriptModule表示一个递归的 TorchScript 模块,类似于一个树形结构。
  • 该模块的原始名称为 MyModel,表示这是一个模型的容器。
  • 该容器包含了两个子模块 convfc,分别是 Conv2dLinear 的递归脚本模块。意味着这两个子模块也是 TorchScript 模块,并可以在 TorchScript 中进行运算。
  • RecursiveScriptModule 可以通过 torch.jit.scripttorch.jit.trace 将 PyTorch 模型转换为 TorchScript 模块。在转换过程中,每个子模块也会被转换为相应的 TorchScript 模块,并嵌套在父模块中。
  • 这种嵌套结构可以很好地表示深度学习模型的层次结构。
  • RecursiveScriptModule中的模块名称和原始名称可以通过original_name属性进行访问。
  • 例如,MyModel 的原始名称是 MyModelconv 模块的原始名称是 Conv2dfc 模块的原始名称是 Linear
相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
机器学习/深度学习 并行计算 PyTorch
TensorRT部署系列 | 如何将模型从 PyTorch 转换为 TensorRT 并加速推理?
TensorRT部署系列 | 如何将模型从 PyTorch 转换为 TensorRT 并加速推理?
1932 0
|
7月前
|
存储 机器学习/深度学习 缓存
vLLM 核心技术 PagedAttention 原理详解
本文系统梳理了 vLLM 核心技术 PagedAttention 的设计理念与实现机制。文章从 KV Cache 在推理中的关键作用与内存管理挑战切入,介绍了 vLLM 在请求调度、分布式执行及 GPU kernel 优化等方面的核心改进。PagedAttention 通过分页机制与动态映射,有效提升了显存利用率,使 vLLM 在保持低延迟的同时显著提升了吞吐能力。
3461 19
vLLM 核心技术 PagedAttention 原理详解
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch 中的动态图与静态图:理解它们的区别及其应用场景
【8月更文第29天】深度学习框架中的计算图是构建和训练神经网络的基础。PyTorch 支持两种类型的计算图:动态图和静态图。本文旨在阐述这两种计算图的区别、各自的优缺点以及它们在不同场景下的应用。
3337 0
在Linux中,有一堆日志文件,如何删除7天前的日志文件?
在Linux中,有一堆日志文件,如何删除7天前的日志文件?
|
PyTorch TensorFlow API
大模型中 .safetensors 文件、.ckpt文件、.gguf和.pth以及.bin文件区别、加载和保存以及转换方式
本文讨论了大模型中不同文件格式如`.safetensors`、`.ckpt`、`.gguf`、`.pth`和`.bin`的区别、用途以及如何在TensorFlow、PyTorch和ONNX等框架之间进行加载、保存和转换。
4384 2
|
机器学习/深度学习 PyTorch TensorFlow
ONNX 与量化:提高模型效率
【8月更文第27天】随着人工智能技术的广泛应用,模型部署变得越来越重要。为了在资源受限的设备上运行复杂的机器学习模型,模型量化技术成为了一种有效的手段。Open Neural Network Exchange (ONNX) 作为一种开放格式,支持在不同框架之间交换训练好的模型,同时也支持模型量化。本文将探讨如何结合 ONNX 和模型量化技术来提高模型的效率,减少模型大小并加快推理速度。
2373 2
|
机器学习/深度学习 并行计算 PyTorch
ONNX 优化技巧:加速模型推理
【8月更文第27天】ONNX (Open Neural Network Exchange) 是一个开放格式,用于表示机器学习模型,使模型能够在多种框架之间进行转换。ONNX Runtime (ORT) 是一个高效的推理引擎,旨在加速模型的部署。本文将介绍如何使用 ONNX Runtime 和相关工具来优化模型的推理速度和资源消耗。
6773 4
|
机器学习/深度学习 编解码 算法
算法工程师面试问题总结 | YOLOv5面试考点原理全解析
本文给大家带来的百面算法工程师是深度学习目标检测YOLOv5面试总结,文章内总结了常见的提问问题,旨在为广大学子模拟出更贴合实际的面试问答场景。在这篇文章中,我们还将介绍一些常见的深度学习目标检测面试问题,并提供参考的回答及其理论基础,以帮助求职者更好地准备面试。通过对这些问题的理解和回答,求职者可以展现出自己的深度学习目标检测领域的专业知识、解决问题的能力以及对实际应用场景的理解。同时,这也是为了帮助求职者更好地应对深度学习目标检测岗位的面试挑战,提升面试的成功率和竞争力。
|
存储 机器学习/深度学习 人工智能
基于Megatron-Core的稀疏大模型训练工具:阿里云MoE大模型最佳实践
随着大模型技术的不断发展,模型结构和参数量级快速演化。大模型技术的应用层出不穷。大模型展现惊人效果,但训练和推理成本高,一直是巨大挑战。模型稀疏化能降低计算和存储消耗。近期以Mixtral为代表的MoE(多专家混合)大模型证明了稀疏MoE技术能大幅降低计算量、提升推理速度,模型效果甚至超过同规模稠密模型。阿里云PAI和NVIDIA团队深入合作,基于Megatron-Core MoE框架,解决了MoE大模型训练落地时会遇到的可拓展性、易用性、功能性以及收敛精度等核心问题,在下游任务上取得了很好的模型效果。