Redis - 数据过期策略

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Redis提供了两种数据过期策略 惰性删除 和 定期删除

Redis提供了两种数据过期策略 惰性删除定期删除

惰性删除

当某个key过期时,不马上删除,而是在调用时,再判断它是否过期,如果过期再删除它

优点 : 对CPU友好,对于很多用不到的key,不用浪费时间进行过期检查
缺点 : 对内存不友好,如果某个key过期了,但一直没使用,那么这个key就会一直留在内存中

定期删除

每隔一段时间,就对一定量的key进行检查,删除里面过期的key

注意: 每次只是检查一定量的key而不是全部key,随着时间的推移,才会遍历Redis中全部的key

定期删除有两种策略:

  • SLOW模式 : 定时任务,执行频率默认为10Hz,即每秒执行10次,可以通过 redis.conf 设置执行频率
  • FAST模式 :执行频率不固定,但两次间隔不低于2ms

优点:对内存友好
缺点:对CPU比较不友好,但是可以通过减少执行的频率来降低对CPU的影响

Redis的过期删除策略: 惰性删除 + 定期删除 两种策略配合使用

目录
相关文章
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
10天前
|
存储 缓存 NoSQL
工作 10 年!Redis 内存淘汰策略 LRU 和传统 LRU 差异,还傻傻分不清
小富带你深入解析Redis内存淘汰机制:LRU与LFU算法原理、实现方式及核心区别。揭秘Redis为何采用“近似LRU”,LFU如何解决频率老化问题,并结合实际场景教你如何选择合适策略,提升缓存命中率。
132 3
|
2月前
|
存储 缓存 人工智能
Redis六大常见命令详解:从set/get到过期策略的全方位解析
本文将通过结构化学习路径,帮助读者实现从命令语法掌握到工程化实践落地的能力跃迁,系统性提升 Redis 技术栈的应用水平。
|
5月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
322 67
|
2月前
|
存储 NoSQL 算法
应对Redis中的并发冲突:有效解决策略
以上策略各有优劣:乐观锁和悲观锁控制得当时可以很好地解决并发问题;发布/订阅模式提高了实时响应能力;Lua脚本和Redis事务保证了命令序列的原子性;分布式锁适合跨节点的并发控制;限流措施和持久化配置从系统设计层面减少并发风险;数据分片通过架构上的优化减轻单个Redis节点的负担。正确选择适合自己应用场景的策略,是解决Redis并发冲突的关键。
208 0
|
4月前
|
存储 监控 NoSQL
流量洪峰应对术:Redis持久化策略与内存压测避坑指南
本文深入解析Redis持久化策略与内存优化技巧,涵盖RDB快照机制、AOF重写原理及混合持久化实践。通过实测数据揭示bgsave内存翻倍风险、Hash结构内存节省方案,并提供高并发场景下的主从复制冲突解决策略。结合压测工具链构建与故障恢复演练,总结出生产环境最佳实践清单。
119 9
|
4月前
|
消息中间件 监控 NoSQL
利用RabbitMQ与Redis实现消息的延迟传递的策略
这个系统就如同一个无懈可击的邮局,无论天气如何变换,它都能确保每一封信准时送达。通过巧妙地运用RabbitMQ的DLX和Redis的Sorted Sets,我们搭建了一座桥梁,让即时和延迟消息的传递高效且无缝对接。
59 3
|
4月前
|
存储 缓存 NoSQL
告别数据僵尸!Redis实现自动清理过期键值对
在数据激增的时代,Redis如同内存管理的智能管家,支持键值对的自动过期功能,实现“数据保鲜”。通过`EXPIRE`设定生命倒计时、`TTL`查询剩余时间,结合惰性删除与定期清理策略,Redis高效维护内存秩序。本文以Python实战演示其过期机制,并提供最佳实践指南,助你掌握数据生命周期管理的艺术,让数据优雅退场。
270 0
|
7月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作
|
7月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,