编辑手记:关于Oracle的序列,相信大家并不陌生,但很多人平时只用到connect by 的方式来构造序列,今天一起来学习更多的构造序列的方法及每个方法的优缺点。
作者介绍
怀晓明,云和恩墨性能优化专家。ITPUB社区版主,兴趣广泛,视野广阔,目前专注于SQL审核与优化工作,是一个细心敏锐的troubleshooter。擅长数据库和web的设计和开发,精于故障诊断和处理。
正文
Oracle构造序列的方法随着版本一直在变化。在9i之前的版本,常用的方法是:
select rownum rn from all_objects where rownum<=xx;
从all_objects等系统视图中去获取序列的方式,虽然简单,但有一个致命的弱点是该视图的sql非常复杂,嵌套层数很多,一旦应用到真实案例中,极有可能碰到Oracle自身的bug,所以这种方式不考虑,直接pass掉。
2、9i之后,我们用connect by
select rownum rn from dual connect by rownum<=xx;
3、自从10g开始支持XML后,还可以使用以下方式:
select rownum rn from xmltable('1 to xx');
接下来我们从序列大小,构造时间等方面对比分析这两种方式。
1、先看connect by的方法
lastwinner@lw> select count(*) from (select rownum rn from dual connect by rownum<=power(2,19));
COUNT(*)
----------
524288
已用时间: 00: 00: 00.20
lastwinner@lw> select count(*) from (select rownum rn from dual connect by rownum<=power(2,20));
select count(*) from (select rownum rn from dual connect by rownum<=power(2,20))
*
第 1 行出现错误:
ORA-30009: CONNECT BY 操作内存不足
可见直接用connect by去构造较大的序列时,消耗的资源很多,速度也快不到哪儿去。实际上2^20并不是一个很大的数字,就是1M而已。
但xmltable方式就不会耗这么多资源
lastwinner@lw> select count(*) from (select rownum rn from xmltable('1 to 1048576'));
COUNT(*)
----------
1048576
已用时间: 00: 00: 00.95
其实除了上述三种办法,我们还可以使用笛卡尔积来构造序列。如果换成笛卡尔连接的方式,那么构造2^20时,connect by也ok
lastwinner@lw> with a as (select rownum rn from dual connect by rownum<=power(2,10))
2 select count(*) from (select rownum rn from a, a);
COUNT(*)
----------
1048576
已用时间: 00: 00: 00.09
我们试着将1M加大到1G,在connect by方式下
lastwinner@lw> with a as (select rownum rn from dual connect by rownum<=power(2,10))
2 select count(*) from (select rownum rn from a, a, a);
COUNT(*)
----------
1073741824
已用时间: 00: 01: 07.37
耗时高达1分钟还多,再看看xmltable方式,考虑到1M的时候耗时就达到0.95秒,因此这里只测试1/16*1G,即64M的情况
lastwinner@lw> select count(*) from (select rownum rn from xmltable('1 to 67108864'));
COUNT(*)
----------
67108864
已用时间: 00: 00: 37.00
如果直接构造到1G,那么时间差不多是16*37s这个级别。
但如果通过笛卡尔积+xmltable的方式来构造。
lastwinner@lw> with a as (select rownum rn from xmltable('1 to 1024'))
2 select count(*) from (select rownum rn from a, a, a);
COUNT(*)
----------
1073741824
已用时间: 00: 01: 07.95
这时间和connect by的差不多。以上测试,总的可见,在构造较大序列时,笛卡尔积的方式是最佳的,单纯使用connect by会遭遇内存不足,而单独使用xmltable则会耗费较多的时间。
现在再看看基本用纯表连接的方式来构造同样大小的序列,先来1M的
lastwinner@lw> with b as (select 1 r from dual union all select 2 from dual),
2 c as (select rownum r from b,b,b,b,b,
3 b,b,b,b,b,
4 b,b,b,b,b,
5 b,b,b,b,b)
6 select count(*) from c;
COUNT(*)
----------
1048576
已用时间: 00: 00: 00.33
再来64M的
lastwinner@lw> ed
已写入 file afiedt.buf
1 with b as (select 1 r from dual union all select 2 from dual),
2 c as (select rownum r from b,b,b,b,b,
3 b,b,b,b,b,
4 b,b,b,b,b,
5 b,b,b,b,b,
6 b,b,b,b,b,b)
7* select count(*) from c
lastwinner@lw> /
COUNT(*)
----------
67108864
已用时间: 00: 00: 16.62
这个速度并不快,但已经比直接xmltable快了。
其实64M,即64*2^20可以表示为(2^5)^5*2,那我们来改写一下64M的sql
lastwinner@lw> with b as (select 1 r from dual union all select 2 from dual),
2 c as (select rownum r from b,b,b,b,b),
3 d as (select rownum r from c,c,c,c,c,b)
4 select count(*) from d;
COUNT(*)
----------
67108864
已用时间: 00: 00: 04.53
可以看到,从16s到4s,已经快了很多。这个示例告诉我们,中间表c 在提高速度方面起到了很好的作用。
但在构造到1G时,还是要慢一些
lastwinner@lw> ed
已写入 file afiedt.buf
1 with b as (select 1 r from dual union all select 2 from dual),
2 c as (select rownum r from b,b,b,b,b),
3 d as (select rownum r from c,c,c,c,c,c)
4* select count(*) from d
lastwinner@lw> /
COUNT(*)
----------
1073741824
已用时间: 00: 01: 11.48
尝试相对较快的写法,多一层中间表
lastwinner@lw> ed
已写入 file afiedt.buf
1 with b as (select 1 r from dual union all select 2 from dual),
2 c as (select rownum r from b,b,b),
3 d as (select rownum r from c,c,c),
4 e as (select rownum r from d,d,d,c)
5* select count(*) from e
lastwinner@lw> /
COUNT(*)
----------
1073741824
已用时间: 00: 01: 06.89
更快一点(思路,32^2=1024, 1G=2^30=(2^5)^6=((2^5)^2)^3 。)
lastwinner@lw> ed
已写入 file afiedt.buf
1 with b as (select 1 r from dual union all select 2 from dual),
2 c as (select rownum r from b,b,b,b,b),
3 d as (select rownum r from c,c),
4 e as (select rownum r from d,d,d)
5* select count(*) from e
lastwinner@lw> /
COUNT(*)
----------
1073741824
已用时间: 00: 01: 05.21
这时候我们将2^5=32换成直接构造出来的方式
lastwinner@lw> ed
已写入 file afiedt.buf
1 with b as (select rownum r from dual connect by rownum<=power(2,5)),
2 c as (select rownum r from b,b),
3 d as (select rownum r from c,c,c)
4* select count(*) from d
lastwinner@lw> /
COUNT(*)
----------
1073741824
已用时间: 00: 01: 05.07
可见所耗费的时间差不多。
由此我们还可以得出,表连接的代价其实也是昂贵的,适当的减少表连接的次数,适当的使用with里的中间表,能有效提高系统性能。
再重复一下刚才构造64M(2^26)的场景
lastwinner@lw> ed
已写入 file afiedt.buf
1 with b as (select 1 r from dual union all select 2 from dual),
2 c as (select rownum r from b,b,b,b,b,
3 b,b,b,b,b,
4 b,b,b,b,b,
5 b,b,b,b,b,
6 b,b,b,b,b,b)
7* select count(*) from c
lastwinner@lw> /
COUNT(*)
----------
67108864
已用时间: 00: 00: 16.62
总共25次的表连接,1层嵌套,让速度非常慢。提高一下(26=4*3*2+2*2),总共8次表连接,3层嵌套。
lastwinner@lw> ed
已写入 file afiedt.buf
1 with b as (select 1 r from dual union all select 2 from dual),
2 c as (select rownum r from b,b,b,b),
3 d as (select rownum r from c,c,c),
4 e as (select rownum r from d,d,b,b)
5* select count(*) from e
lastwinner@lw> /
COUNT(*)
----------
67108864
已用时间: 00: 00: 04.00
效率提升4倍。要注意在这个案例中并非表连接越少越好,嵌套层数也是需要关注的指标。执行计划有兴趣的同学自己去看吧,我就不列了,上例中,系统生成的中间表有3个。
最终结论,构造较大序列时,例如同样是构造出64M的序列,oracle在处理时,用表连接的方式明显占优。但考虑到书写的便利性,因此在构造较小序列的时候,比如不超过1K的序列,那么直接用connect by或xmltable的方式就好了。
附:newkid 回复方法,表示更灵活,有兴趣的同学可以尝试:
create or replace function generator (n pls_integer) return sys.odcinumberlist pipelined is
m pls_integer := trunc(n / 10);
r pls_integer := n - 10 * m;
begin
for i in 1 .. m loop
pipe row (null);
pipe row (null);
pipe row (null);
pipe row (null);
pipe row (null);
pipe row (null);
pipe row (null);
pipe row (null);
pipe row (null);
pipe row (null);
end loop;
for i in 1 .. r loop
pipe row (null);
end loop;
end;
/
alter function generator compile plsql_code_type = native;
SQL> select count(*) from table(generator(67108864));
COUNT(*)
----------
67108864
Elapsed: 00:00:06.68
SQL> with b as (select 1 r from dual union all select 2 from dual),
2 c as (select rownum r from b,b,b,b),
3 d as (select rownum r from c,c,c),
4 e as (select rownum r from d,d,b,b)
5 select count(*) from e;
COUNT(*)
----------
67108864
Elapsed: 00:00:06.32
本文出自数据和云公众号,原文链接