如何保障 MySQL 和 Redis 的数据一致性?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 如何保障 MySQL 和 Redis 的数据一致性?

我直接先抛一下结论:在满足实时性的条件下,不存在两者完全保存一致的方案,只有最终一致性方案。 根据网上的众多解决方案,总结出 6 种,直接上图:

不好的方案

1. 先写 MySQL,再写 Redis

图解说明:

  1. 1.这是一副时序图,描述请求的先后调用顺序;
  2. 2.橘黄色的线是请求 A,黑色的线是请求 B;
  3. 3.橘黄色的文字,是 MySQL 和Redis 最终不一致的数据;
  4. 4.数据是从 10 更新为 11;
  5. 5.后面所有的图,都是这个含义,不再赘述。

请求 A、B 都是先写MySQL,然后再写 Redis,在高并发情况下,如果请求 A 在写 Redis 时卡了一会,请求 B 已经依次完成数据的更新,就会出现图中的问题。


这个图已经画的很清晰了,我就不用再去啰嗦了吧,不过这里有个前提,就是对于读请求,先去读 Redis,如果没有,再去读 DB,但是读请求不会再回写 Redis。 大白话说一下,就是读请求不会更新 Redis。


2. 先写 Redis,再写 MySQL

同“先写 MySQL,再写 Redis”,看图可秒懂。

3. 先删除 Redis,再写 MySQL

这幅图和上面有些不一样,前面的请求 A 和 B 都是更新请求,这里的请求 A 是更新请求,但是请求 B 是读请求,且请求 B 的读请求会回写 Redis。

请求 A 先删除缓存,可能因为卡顿,数据一直没有更新到 MySQL,导致两者数据不一致。


这种情况出现的概率比较大,因为请求 A 更新 MySQL 可能耗时会比较长,而请求 B 的前两步都是查询,会非常快。


好的方案

4. 先删除 Redis,再写 MySQL,再删除 Redis


对于“先删除 Redis,再写 MySQL”,如果要解决最后的不一致问题,其实再对 Redis 重新删除即可,这个也是大家常说的“缓存双删”。

为了便于大家看图,对于蓝色的文字,“删除缓存 10”必须在“回写缓存10”后面,那如何才能保证一定是在后面呢?网上给出的第一个方案是,让请求 A 的最后一次删除,等待 500ms。


对于这种方案,看看就行,反正我是不会用,太 Low 了,风险也不可控。


那有没有更好的方案呢,我建议异步串行化删除,即删除请求入队列

异步删除对线上业务无影响,串行化处理保障并发情况下正确删除。


如果双删失败怎么办,网上有给 Redis 加一个缓存过期时间的方案,这个不敢苟同。个人建议整个重试机制,可以借助消息队列的重试机制,也可以自己整个表,记录重试次数,方法很多。


简单小结一下:

1.“缓存双删”不要用无脑的 sleep 500 ms;

2.通过消息队列的异步&串行,实现最后一次缓存删除;

3.缓存删除失败,增加重试机制。


5. 先写 MySQL,再删除 Redis

对于上面这种情况,对于第一次查询,请求 B 查询的数据是 10,但是 MySQL 的数据是 11,只存在这一次不一致的情况,对于不是强一致性要求的业务,可以容忍。(那什么情况下不能容忍呢,比如秒杀业务、库存服务等。)


当请求 B 进行第二次查询时,因为没有命中 Redis,会重新查一次 DB,然后再回写到 Reids。


这里需要满足 2 个条件:

1.缓存刚好自动失效;

2.请求 B 从数据库查出 10,回写缓存的耗时,比请求 A 写数据库,并且删除缓存的还长。


对于第二个条件,我们都知道更新 DB 肯定比查询耗时要长,所以出现这个情况的概率很小,同时满足上述条件的情况更小。


6. 先写 MySQL,通过 Binlog,异步更新 Redis


这种方案,主要是监听 MySQL 的 Binlog,然后通过异步的方式,将数据更新到 Redis,这种方案有个前提,查询的请求,不会回写 Redis。

这个方案,会保证 MySQL 和 Redis 的最终一致性,但是如果中途请求 B 需要查询数据,如果缓存无数据,就直接查 DB;如果缓存有数据,查询的数据也会存在不一致的情况。


所以这个方案,是实现最终一致性的终极解决方案,但是不能保证实时性。


几种方案比较

我们对比上面讨论的 6 种方案:


1. 先写 Redis,再写 MySQL

1.这种方案,我肯定不会用,万一 DB 挂了,你把数据写到缓存,DB 无数据,这个是灾难性的;

2.我之前也见同学这么用过,如果写 DB 失败,对 Redis 进行逆操作,那如果逆操作失败呢,是不是还要搞个重试?


2. 先写 MySQL,再写 Redis

1.对于并发量、一致性要求不高的项目,很多就是这么用的,我之前也经常这么搞,但是不建议这么做;

2.当 Redis 瞬间不可用的情况,需要报警出来,然后线下处理。


3. 先删除 Redis,再写 MySQL

这种方式,我还真没用过,直接忽略吧。


4. 先删除 Redis,再写 MySQL,再删除 Redis

1.这种方式虽然可行,但是感觉好复杂,还要搞个消息队列去异步删除 Redis。


5. 先写 MySQL,再删除 Redis

1.比较推荐这种方式,删除 Redis 如果失败,可以再多重试几次,否则报警出来;

2.这个方案,是实时性中最好的方案,在一些高并发场景中,推荐这种。


6. 先写 MySQL,通过 Binlog,异步更新 Redis

1.对于异地容灾、数据汇总等,建议会用这种方式,比如 binlog + kafka,数据的一致性也可以达到秒级;

2.纯粹的高并发场景,不建议用这种方案,比如抢购、秒杀等。


个人结论

1.实时一致性方案:采用“先写 MySQL,再删除 Redis”的策略,这种情况虽然也会存在两者不一致,但是需要满足的条件有点苛刻,所以是满足实时性条件下,能尽量满足一致性的最优解。

2.最终一致性方案:采用“先写 MySQL,通过 Binlog,异步更新 Redis”,可以通过 Binlog,结合消息队列异步更新 Redis,是最终一致性的最优解。


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
相关文章
|
4月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
6月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
6月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
|
8月前
|
缓存 NoSQL 关系型数据库
Redis与MySQL的数据一致性
在高并发环境下,保持 Redis 和 MySQL 的数据一致性是一个复杂但重要的问题。通过采用读写穿透、写穿透、分布式锁、双写一致性保障和延时双删策略,可以有效地减少数据不一致的风险,确保系统的稳定性和可靠性。通过合理的缓存策略和数据同步机制,可以显著提升系统的性能和用户体验。
368 22
|
7月前
|
SQL 存储 关系型数据库
MySQL主从复制 —— 作用、原理、数据一致性,异步复制、半同步复制、组复制
MySQL主从复制 作用、原理—主库线程、I/O线程、SQL线程;主从同步要求,主从延迟原因及解决方案;数据一致性,异步复制、半同步复制、组复制
650 11
|
4月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
636 0
|
4月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
168 32
|
4月前
|
缓存 NoSQL Java
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
94 5
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
|
6月前
|
缓存 监控 NoSQL
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
1049 29
|
6月前
|
缓存 NoSQL Java
Redis应用—8.相关的缓存框架
本文介绍了Ehcache和Guava Cache两个缓存框架及其使用方法,以及如何自定义缓存。主要内容包括:Ehcache缓存框架、Guava Cache缓存框架、自定义缓存。总结:Ehcache适合用作本地缓存或与Redis结合使用,Guava Cache则提供了更灵活的缓存管理和更高的并发性能。自定义缓存可以根据具体需求选择不同的数据结构和引用类型来实现特定的缓存策略。
357 16
Redis应用—8.相关的缓存框架

推荐镜像

更多