【MATLAB第61期】基于MATLAB的GMM高斯混合模型回归数据预测

简介: 后台私信回复“61期”即可获取下载链接。

【MATLAB第61期】基于MATLAB的GMM高斯混合模型回归数据预测

  1. 高斯混合模型GMM广泛应用于数据挖掘、模式识别、机器学习和统计分析。其中,它们的参数通常由最大似然和EM算法确定。
  2. 关键思想是使用高斯混合模型对数据(包括输入和输出)的联合概率密度函数进行建模。
  3. 文献参考:https://doi.org/10.1016/j.specom.2012.06.005。
  4. 使用工具箱netlab。

一、效果展示

2023-07-28_171759.png

二、代码展示

1.数据(7输入1输出)

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

2.GMM参数设置

% GMM参数设置
iter = 25;   % 迭代次数
Cov_type = 'full';  %协方差矩阵的类型
N_inputs = min(size(p_train'));%输入维度        
N_outputs = min(size(t_train'));%输出维度 
N_mixtures = 3;%高斯混合模型混合数

3.GMM仿真预测及评价指标计算

%%  仿真预测
t_sim1 = GMM( p_train', N_inputs, N_outputs, N_mixtures, Cov_type);
t_sim2 = GMM( p_test', N_inputs, N_outputs, N_mixtures, Cov_type);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output)';
T_sim2 = mapminmax('reverse', t_sim2, ps_output)';



%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);


%%  绘图
figure()
subplot(2,1,1)
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   'GMM训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

subplot(2,1,2)
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   'GMM测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2)^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%  MAPE   mape = mean(abs((YReal - YPred)./YReal));

mape1 = mean(abs((T_train - T_sim1)./T_train));    
mape2 = mean(abs((T_test - T_sim2 )./T_test));      

disp(['训练集数据的MAPE为:', num2str(mape1)])
disp(['测试集数据的MAPE为:', num2str(mape2)])

三、代码获取

后台私信回复“61期”即可获取下载链接。

相关文章
|
4天前
|
算法 调度
电网两阶段鲁棒优化调度模型(含matlab程序)
电网两阶段鲁棒优化调度模型(含matlab程序)
|
4天前
|
算法 计算机视觉 异构计算
基于肤色模型的人脸识别FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于肤色检测算法的摘要:使用MATLAB 2022a和Vivado 2019.2进行测试和仿真,涉及图像预处理、RGB到YCbCr转换、肤色模型(基于阈值或概率)以及人脸检测。核心程序展示了如何读取图像数据并输入到FPGA处理,通过`tops`模块进行中值滤波、颜色空间转换及人脸检测,最终结果输出到"face.txt"。
|
4天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
4天前
|
数据安全/隐私保护
matlab程序, 脉冲波合成与提取,滑冲效应、方向性效应,自定义脉冲模型,提取脉冲波
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
4天前
|
算法 数据安全/隐私保护
matlab程序,傅里叶变换,频域数据,补零与不补零傅里叶变换
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
4天前
|
数据安全/隐私保护
matlab 曲线光滑,去毛刺,去离群值,数据滤波,高通滤波,低通滤波,带通滤波,带阻滤波
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
4天前
|
数据安全/隐私保护
时域与频域数据互相转换,傅里叶变换与逆傅里叶变换,matlab程序,时域转频域
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
4天前
|
算法 调度
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
|
4天前
|
算法 调度 SoC
电动汽车充放电V2G模型(Matlab代码)
电动汽车充放电V2G模型(Matlab代码)
|
4天前
|
算法
考虑区域多能源系统集群协同优化的联合需求侧响应模型(matlab代码)
考虑区域多能源系统集群协同优化的联合需求侧响应模型(matlab代码)

热门文章

最新文章