jvm之7种垃圾回收器解读(下)(二)

简介: jvm之7种垃圾回收器解读(下)(二)

G1垃圾收集器还增加了一种新的内存区域,叫做Humongous内存区域,如图中的H块。主要用于存储大对象,如果超过1.5个region,就放到H。

设置H的原因:对于堆中的对象,默认直接会被分配到老年代,但是如果它是一个短期存在的大对象就会对垃圾收集器造成负面影响。为了解决这个问题,G1划分了一个Humongous区,它用来专门存放大对象。如果一个H区装不下一个大对象,那么G1会寻找连续的H区来存储。为了能找到连续的H区,有时候不得不启动Full GC。G1的大多数行为都把H区作为老年代的一部分来看待。

每个Region都是通过指针碰撞来分配空间

G1垃圾回收器的回收过程

G1GC的垃圾回收过程主要包括如下三个环节:

  • 年轻代GC(Young GC)
  • 老年代并发标记过程(Concurrent Marking)
  • 混合回收(Mixed GC)
    (如果需要,单线程、独占式、高强度的Full GC还是继续存在的。它针对GC的评估失败提供了一种失败保护机制,即强力回收。)

 

顺时针,Young gc -> Young gc + Concurrent mark->Mixed GC顺序,进行垃圾回收。

应用程序分配内存,当年轻代的Eden区用尽时开始年轻代回收过程;G1的年轻代收集阶段是一个并行的独占式收集器。在年轻代回收期,G1GC暂停所有应用程序线程,启动多线程执行年轻代回收。然后从年轻代区间移动存活对象到Survivor区间或者老年区间,也有可能是两个区间都会涉及。

当堆内存使用达到一定值(默认45%)时,开始老年代并发标记过程。

标记完成马上开始混合回收过程。对于一个混合回收期,G1 GC从老年区间移动存活对象到空闲区间,这些空闲区间也就成为了老年代的一部分。和年轻代不同,老年代的G1回收器和其他GC不同,G1的老年代回收器不需要整个老年代被回收,一次只需要扫描/回收一小部分老年代的Region就可以了。同时,这个老年代Region是和年轻代一起被回收的。

G1回收过程一:年轻代GC

VM启动时,G1先准备好Eden区,程序在运行过程中不断创建对象到Eden区,当Eden空间耗尽时,G1会启动一次年轻代垃圾回收过程。

年轻代垃圾回收只会回收Eden区和Survivor区。

首先G1停止应用程序的执行(Stop-The-World),G1创建回收集(Collection Set),回收集是指需要被回收的内存分段的集合,年轻代回收过程的回收集包含年轻代Eden区和Survivor区所有的内存分段。

第一阶段,扫描根。根是指static变量指向的对象,正在执行的方法调用链条上的局部变量等。根引用连同RSet记录的外部引用作为扫描存活对象的入口。

第二阶段,更新RSet。处理dirty card queue(见备注)中的card,更新RSet。此阶段完成后,RSet可以准确的反映老年代对所在的内存分段中对象的引用。

第三阶段,处理RSet。识别被老年代对象指向的Eden中的对象,这些被指向的Eden中的对象被认为是存活的对象。

第四阶段,复制对象。此阶段,对象树被遍历,Eden区内存段中存活的对象会被复制到Survivor区中空的内存分段,Survivor区内存段中存活的对象如果年龄未达阈值,年龄会加1,达到阀值会被会被复制到Old区中空的内存分段。如果Survivor空间不够,Eden空间的部分数据会直接晋升到老年代空间。

第五阶段,处理引用。处理Soft,Weak,Phantom,Final,JNI Weak 等引用。最终Eden空间的数据为空,GC停止工作,而目标内存中的对象都是连续存储的,没有碎片,所以复制过程可以达到内存整理的效果,减少碎片。

G1回收过程二:并发标记过程

初始标记阶段:标记从根节点直接可达的对象。这个阶段是STW的,并且会触发一次年轻代GC。

根区域扫描(Root Region Scanning):G1 GC扫描Survivor区直接可达的老年代区域对象,并标记被引用的对象。这一过程必须在YoungGC之前完成。

并发标记(Concurrent Marking):在整个堆中进行并发标记(和应用程序并发执行),此过程可能被YoungGC中断。在并发标记阶段,若发现区域对象中的所有对象都是垃圾,那这个区域会被立即回收。同时,并发标记过程中,会计算每个区域的对象活性(区域中存活对象的比例)。

再次标记(Remark):由于应用程序持续进行,需要修正上一次的标记结果。是STW的。G1中采用了比CMS更快的初始快照算法:snapshot-at-the-beginning(SATB)。

独占清理(cleanup,STW):计算各个区域的存活对象和GC回收比例,并进行排序,识别可以混合回收的区域。为下阶段做铺垫。是STW的。这个阶段并不会实际上去做垃圾的收集

G1回收过程三:混合回收

当越来越多的对象晋升到老年代o1d region时,为了避免堆内存被耗尽,虚拟机会触发一个混合的垃圾收集器,即Mixed GC,该算法并不是一个Old GC,除了回收整个Young Region,还会回收一部分的Old Region。这里需要注意:是一部分老年代,而不是全部老年代。可以选择哪些Old Region进行收集,从而可以对垃圾回收的耗时时间进行控制。也要注意的是Mixed GC并不是Full GC。

并发标记结束以后,老年代中百分百为垃圾的内存分段被回收了,部分为垃圾的内存分段被计算了出来。默认情况下,这些老年代的内存分段会分8次(可以通过-XX:G1MixedGCCountTarget设置)被回收

混合回收的回收集(Collection Set)包括八分之一的老年代内存分段,Eden区内存分段,Survivor区内存分段。混合回收的算法和年轻代回收的算法完全一样,只是回收集多了老年代的内存分段。具体过程请参考上面的年轻代回收过程。

由于老年代中的内存分段默认分8次回收,G1会优先回收垃圾多的内存分段。垃圾占内存分段比例越高的,越会被先回收。并且有一个阈值会决定内存分段是否被回收,-XX:G1MixedGCLiveThresholdPercent,默认为65%,意思是垃圾占内存分段比例要达到65%才会被回收。如果垃圾占比太低,意味着存活的对象占比高,在复制的时候会花费更多的时间。

混合回收并不一定要进行8次。有一个阈值-XX:G1HeapWastePercent,默认值为10%,意思是允许整个堆内存中有10%的空间被浪费,意味着如果发现可以回收的垃圾占堆内存的比例低于10%,则不再进行混合回收。因为GC会花费很多的时间但是回收到的内存却很少

G1回收可选的过程四:Full GC

G1的初衷就是要避免Full GC的出现。但是如果上述方式不能正常工作,G1会停止应用程序的执行(Stop-The-World),使用单线程的内存回收算法进行垃圾回收,性能会非常差,应用程序停顿时间会很长。

要避免Full GC的发生,一旦发生需要进行调整。什么时候会发生Full GC呢?比如堆内存太小,当G1在复制存活对象的时候没有空的内存分段可用,则会回退到Full GC,这种情况可以通过增大内存解决。

导致G1 Full GC的原因可能有两个:

  • Evacuation的时候没有足够的to-space来存放晋升的对象;
  • 并发处理过程完成之前空间耗尽。

G1回收器优化建议

年轻代大小

  • 避免使用-Xmn-XX:NewRatio等相关选项显式设置年轻代大小
  • 固定年轻代的大小会覆盖暂停时间目标

暂停时间目标不要太过严苛

  • G1 GC的吞吐量目标是90%的应用程序时间和10%的垃圾回收时间
  • 评估G1 GC的吞吐量时,暂停时间目标不要太严苛。目标太过严苛表示你愿意承受更多的垃圾回收开销,而这些会直接影响到吞吐量。

7种经典垃圾回收器总结

垃圾收集器 分类 作用位置 使用算法 特点 适用场景
Serial 串行运行 作用于新生代 复制算法 响应速度优先 适用于单 CPU 环境下的 client 模式
ParNew 并行运行 作用于新生代 复制算法 响应速度优先 多 CPU 环境 Server 模式下与 CMS 配合使用
Parallel 并行运行 作用于新生代 复制算法 吞吐量优先 适用于后台运算而不需要太多交互的场景
Serial Old 串行运行 作用于老年代 标记-压缩算法 响应速度优先 适用于单 CPU 环境下的 Client 模式
Parallel Old 并行运行 作用于老年代 标记-压缩算法 吞吐量优先 适用于后台运算而不需要太多交互的场景
CMS 并发运行 作用于老年代 标记-清除算法 响应速度优先 适用于互联网或 B/S 业务
G1 并发、并行运行 作用于新生代、老年代 标记-压缩算法、复制算法 响应速度优先 面向服务端应用
  1. 优先调整堆的大小让 JVM 自适应完成。
  2. 如果内存小于 100M,使用串行收集器
  3. 如果是单核、单机程序,并且没有停顿时间的要求,串行收集器
  4. 如果是多 CPU、需要高吞吐量、允许停顿时间超过 1 秒,选择并行或者 JVM 自己选择
  5. 如果是多 CPU、追求低停顿时间,需快速响应(比如延迟不能超过 1 秒,如互联网应用),使用并发收集器
    官方推荐 G1,性能高。现在互联网的项目,基本都是使用 G1。
相关文章
|
6月前
|
Arthas 存储 算法
深入理解JVM,包含字节码文件,内存结构,垃圾回收,类的声明周期,类加载器
JVM全称是Java Virtual Machine-Java虚拟机JVM作用:本质上是一个运行在计算机上的程序,职责是运行Java字节码文件,编译为机器码交由计算机运行类的生命周期概述:类的生命周期描述了一个类加载,使用,卸载的整个过类的生命周期阶段:类的声明周期主要分为五个阶段:加载->连接->初始化->使用->卸载,其中连接中分为三个小阶段验证->准备->解析类加载器的定义:JVM提供类加载器给Java程序去获取类和接口字节码数据类加载器的作用:类加载器接受字节码文件。
615 55
|
11月前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
295 27
|
12月前
|
监控 算法 Java
Java虚拟机(JVM)的垃圾回收机制深度解析####
本文深入探讨了Java虚拟机(JVM)的垃圾回收机制,旨在揭示其背后的工作原理与优化策略。我们将从垃圾回收的基本概念入手,逐步剖析标记-清除、复制算法、标记-整理等主流垃圾回收算法的原理与实现细节。通过对比不同算法的优缺点及适用场景,为开发者提供优化Java应用性能与内存管理的实践指南。 ####
|
6月前
|
缓存 算法 Java
JVM深入原理(八)(一):垃圾回收
弱引用-作用:JVM中使用WeakReference对象来实现软引用,一般在ThreadLocal中,当进行垃圾回收时,被弱引用对象引用的对象就直接被回收.软引用-作用:JVM中使用SoftReference对象来实现软引用,一般在缓存中使用,当程序内存不足时,被引用的对象就会被回收.强引用-作用:可达性算法描述的根对象引用普通对象的引用,指的就是强引用,只要有这层关系存在,被引用的对象就会不被垃圾回收。引用计数法-缺点:如果两个对象循环引用,而又没有其他的对象来引用它们,这样就造成垃圾堆积。
186 0
|
6月前
|
算法 Java 对象存储
JVM深入原理(八)(二):垃圾回收
Java垃圾回收过程会通过单独的GC线程来完成,但是不管使用哪一种GC算法,都会有部分阶段需要停止所有的用户线程。这个过程被称之为StopTheWorld简称STW,如果STW时间过长则会影响用户的使用。一般来说,堆内存越大,最大STW就越长,想减少最大STW,就会减少吞吐量,不同的GC算法适用于不同的场景。分代回收算法将整个堆中的区域划分为新生代和老年代。--超过新生代大小的大对象会直接晋升到老年代。
158 0
|
8月前
|
缓存 监控 算法
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
|
12月前
|
机器学习/深度学习 监控 算法
Java虚拟机(JVM)的垃圾回收机制深度剖析####
本文深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法、性能调优策略及未来趋势。通过实例解析,为开发者提供优化Java应用性能的思路与方法。 ####
271 28
|
11月前
|
算法 网络协议 Java
【JVM】——GC垃圾回收机制(图解通俗易懂)
GC垃圾回收,标识出垃圾(计数机制、可达性分析)内存释放机制(标记清除、复制算法、标记整理、分代回收)
|
缓存 算法 Java
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
这篇文章详细介绍了Java虚拟机(JVM)中的垃圾回收机制,包括垃圾的定义、垃圾回收算法、堆内存的逻辑分区、对象的内存分配和回收过程,以及不同垃圾回收器的工作原理和参数设置。
696 4
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
|
11月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####