C语言进阶之数据的存储

简介: 使用这个类型开辟内存空间的大小(大小决定了使用范围)。

451a65e312aa4daeb4c1bbf17ea377a5.png


1. 数据类型介绍


在C语言初阶之数据类型这篇博客中,我们提到了关于数据内存的大小和基本用法

链接:C语言初阶之数据类型


char        //字符数据类型
short       //短整型
int         //整形
long        //长整型
long long   //更长的整形
float       //单精度浮点数
double      //双精度浮点数


类型的意义:


1.使用这个类型开辟内存空间的大小(大小决定了使用范围)。

2.如何看待内存空间的视角


1.1 类型的基本归类


整形家族:


char
  unsigned char
  signed char
short
  unsigned short [int]
  signed short [int]
int
  unsigned int
  signed int
long
  unsigned long [int]
  signed long [int]


浮点数家族:


float
double


构造类型:


> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union


指针类型:


int *pi;//整形指针
char *pc;//字符整形指针
float* pf;//单精度浮点指针
void* pv;//空指针


空类型:

void 表示空类型(无类型)

通常应用于函数的返回类型、函数的参数、指针类型


2.整型在内存中的存储


比如


int a=10;
int b=-10;


它们在内存中是如何存储的呢?

我们先了解下面的概念


2.1原码、反码、补码


计算机中的整数有三种2进制表示方法,即原码、反码和补码。

三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位正数的原、反、补码都相同。

负整数的三种表示方法各不相同。

原码

直接将数值按照正负数的形式翻译成二进制就可以得到原码。

反码

将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码

反码+1就得到补码。

对于整形来说:数据存放内存中其实存放的是补码。

为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;

同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

根据上面的原码、反码、补码的结论,我们先猜想这两个整形在内存中存储如下


2809441ee5fc46c395952dc74e78c5ae.png


为了方便,所以VS编译器在内存显示时,使用的是十六进制数,所以经过计算,正数的原反补都相同,所以存储的应该是原码直接转换成的十六进制数,而负数则需要先通过计算再得到补码,再转换为十六进制数


这里可能小伙伴有疑问,为什么负数原码开头是0,其实在C语言初阶之数据类型这篇博客中,我们可以知道,整形在存储时,第一位为符号位,0表示整数,1表示负数,后面的31位才是有效存储位置。


我们看看上面两个整形在内存中的存储具体如何


851cbfa5e41c4ca28f9ba4cf612c09c9.png


我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对。

这是又为什么?

这就涉及到接下来我们要介绍的知识


大小端介绍


什么是大端小端:

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;

小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。

为什么有大端和小端:

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。


所以在这里我们可以推断出,作者使用的电脑的存储模式应该是小端存储,而如果是大端存储的机器,则和我们开始预想的是相同的结果。


曾经有一个大厂在面试时,提出一个这样的题目:设计一个小程序来判断当前机器的字节序


代码如下:


//代码1
#include <stdio.h>
int check_sys()
{
  int i = 1;
  return (*(char *)&i);
}
int main()
{
  int ret = check_sys();
  if(ret == 1)
  {
    printf("小端\n");
  }
  else
  {
    printf("大端\n");
  }
  return 0;
}


这种写法的思路就是先设定整形为一,取整形的第一个字节,也就是一个字符整形的长度,来通过判断是否为0,为0则为大端,不为0则为小端。

或者还有下面的这种写法


int check_sys()
{
 union
 {
  int i;
  char c;
 }un;
  un.i = 1;
  return un.c;
}


这种写法则是利用了联合体的存储性质,原理和上面类似。


2.3练习


接下来我们看下面一段代码


28d9f882b5aa4ad9bac0c40b2b8b9b6e.png


你觉得会输出什么呢

答案如下:


433b875fb69b48c59a10e177f7dea95c.png


分析如下


8ffd01a1591449cf82142170815c586b.png


再看下面代码


db3fd8c220974d6988fd6ea0dafadaca.png


输出结果如下:


d9d689d51c894e7385f8dcee460409f4.png


分析如下


0209f2f9735d4b42bec9047107705771.png


再看第三段代码


e999004355a440898de4d509dad80187.png


输出结果如下


37a2887cfc6848bcbd37dc2c632059f5.png


看到这有人可能就有疑问了,为什么和上面的结果一样

下面看分析


12f160b5cdff4a80bb32487ae12e3ff0.png


再看第四段代码


4d9645b021d64114b4f8f61849a94fcf.png


通过上面的知识,我们不难分析出

输出结果应该是个死循环

结果应该是9,8,7,6,5,4,3,2,1,0,4294967295(无符号整形的最大值)…

这里的问题出现在条件的设置上,条件改为i>0即可避免

再看下面代码


2dcd54da5a7e4482aebe1e2e2bbc460b.png


输出结果如下


53111db1f41a44a28319fde54246dc69.png


为什么会是这个结果呢?

我们通过下面的字符整形存储图来看看


99a382a5621646d989c36dd00af6fa3e.png


结合之前的字符类型的知识,我们知道,字符整形的范围为-128~127,所以超出127时,又从-128开始存储,一直循环再这个范围内,然后我们再看这里使用的是strlen函数统计的字符串长度,而strlen函数的条件是找到‘\0’终止,然后返回结果,从这个图我们不然看出,从-1到0之间总共是256个数,所以最后的结果就是255(0不计入字符个数)。

再看最后一段代码


596f0c4f3d5149ba8ef50d878ac44386.png


输出结果为死循环,如下:


cb97adf1076d4e1aaf9eb214c3cfd109.png


和上一个代码类似,因为无符号字符整形的范围,就是0-255,所以代码又进入了环状的循环。


3. 浮点型在内存中的存储


首先我们先看一个浮点数的存储代码例子


int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 return 0;
}


输出结果


0c1849d97c024a04b8f1bba2b3a233fc.png


在之前的学习中,我们知道整形和单精度浮点数的存储空间均为4个字节,但是通过这段代码,我们不难看出浮点数和整形在内存中的存储可能并不相同。


3.1浮点数存储规则


num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。


根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:


★(-1)^S * M * 2^E

★(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。

★M表示有效数字,大于等于1,小于2。

★2^E表示指数位。


举例来说:

十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:


对于32位的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。


64b09e43d0eb4d3c8d50f357327661b8.png


对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。


709d2954983e4ed3ac427229f0bb24b9.png


IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存10+127=137,即10001001。

然后,指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

比如:

0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进

制表示形式为:


0 01111110 00000000000000000000000


E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,

有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);


浮点数的存储全部介绍完后,我们再来分析上面的代码:


下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ?

首先,将 0x00000009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,最后23位的有效数字M=000 0000 0000 0000 0000 1001。


9 -> 0000 0000 0000 0000 0000 0000 0000 1001


由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:

  V=(-1)0 × 0.00000000000000000001001×2(-126)=1.001×2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。


再看第二部分。

请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?

首先,浮点数9.0等于二进制的1001.0,即1.001×2^3


9.0 -> 1001.0 ->(-1)^01.0012^3 -> s=0, M=1.001,E=3+127=130


那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010。

所以,写成二进制形式,应该是s+E+M,即


0 10000010 001 0000 0000 0000 0000 0000


这个32位的二进制数,还原成十进制,正是 1091567616 。


有兴趣的小伙伴可以关注作者,如果觉得内容不错,请给个一键三连吧,蟹蟹你哟!!!

制作不易,如有不正之处敬请指出

感谢大家的来访,UU们的观看是我坚持下去的动力

在时间的催化剂下,让我们彼此都成为更优秀的人吧!!!

91ddbda2e6494fdfa35819221e6828de.png

相关文章
|
1天前
|
存储 数据建模 程序员
C 语言结构体 —— 数据封装的利器
C语言结构体是一种用户自定义的数据类型,用于将不同类型的数据组合在一起,形成一个整体。它支持数据封装,便于管理和传递复杂数据,是程序设计中的重要工具。
|
2月前
|
存储 编译器 C语言
C语言存储类详解
在 C 语言中,存储类定义了变量的生命周期、作用域和可见性。主要包括:`auto`(默认存储类,块级作用域),`register`(建议存储在寄存器中,作用域同 `auto`,不可取地址),`static`(生命周期贯穿整个程序,局部静态变量在函数间保持值,全局静态变量限于本文件),`extern`(声明变量在其他文件中定义,允许跨文件访问)。此外,`typedef` 用于定义新数据类型名称,提升代码可读性。 示例代码展示了不同存储类变量的使用方式,通过两次调用 `function()` 函数,观察静态变量 `b` 的变化。合理选择存储类可以优化程序性能和内存使用。
160 82
|
1月前
|
存储 C语言 C++
深入C语言,发现多样的数据之枚举和联合体
深入C语言,发现多样的数据之枚举和联合体
深入C语言,发现多样的数据之枚举和联合体
|
1月前
|
存储 C语言
C语言中的浮点数存储:深入探讨
C语言中的浮点数存储:深入探讨
|
1月前
|
存储 C语言
深入C语言内存:数据在内存中的存储
深入C语言内存:数据在内存中的存储
|
1月前
|
C语言
回溯入门题,数据所有排列方式(c语言)
回溯入门题,数据所有排列方式(c语言)
|
2月前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
412 8
|
2月前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
2月前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
2月前
|
C语言
C语言程序设计核心详解 第二章:数据与数据类型 4种常量详解 常见表达式详解
本文详细介绍了C语言中的数据与数据类型,包括常量、变量、表达式和函数等内容。常量分为整型、实型、字符型和字符串常量,其中整型常量有十进制、八进制和十六进制三种形式;实型常量包括小数和指数形式;字符型常量涵盖常规字符、转义字符及八进制、十六进制形式;字符串常量由双引号括起。变量遵循先定义后使用的规则,并需遵守命名规范。函数分为标准函数和自定义函数,如`sqrt()`和`abs()`。表达式涉及算术、赋值、自增自减和逗号运算符等,需注意运算符的优先级和结合性。文章还介绍了强制类型转换及隐式转换的概念。
下一篇
无影云桌面