融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法(DAHHO)-附matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法(DAHHO)-附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算是一种用于解决优化问题的算法。这个算法的灵感来自于自然界中的两种鸟类:阿奎拉鹰和哈里斯鹰。

阿奎拉鹰是一种在空中悬停、搜索和捕食的鸟类。它们通过观察环境中的动态变化来调整自己的飞行策略,以更好地捕获猎物。这个特性被应用到算法中,就是通过动态反向学习来调整算法的参数,以适应问题的变化。

哈里斯鹰是一种善于跟踪和追踪猎物的鸟类。它们能够根据目标的位置和速度来调整自己的飞行路径,以更好地捕捉猎物。这个特性被应用到算法中,就是通过追踪和更新最优解的位置,以逐步优化算法的性能。

融合了阿奎拉鹰和哈里斯鹰的混合优化算法通过结合它们各自的优点,提供了一种更强大和高效的优化方法。它能够在动态环境中自适应地调整参数,并且能够快速收敛到较优解。这使得它在解决复杂的优化问题时具有很好的性能和鲁棒性。

总结起来,融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法是一种结合了两种鸟类优势的算法,用于解决优化问题,具有适应动态环境、快速收敛和高效性能等特点。


融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法的步骤如下:

  1. 初始化种群:随机生成一组个体作为初始种群。每个个体表示一个解决方案。
  2. 评估适应度:对于每个个体,使用适应度函数评估其解决方案的质量。适应度函数可以根据具体问题进行定义。
  3. 选择操作:根据个体的适应度值,选择一部分个体作为优秀个体,用于下一步的操作。
  4. 动态反向学习:对于优秀个体,使用动态反向学习算法进行学习和优化。动态反向学习是一种自适应学习算法,可以根据问题的特性自动调整参数和搜索策略,提高搜索效率和准确性。
  5. 哈里斯鹰算法操作:对于剩余的个体,使用哈里斯鹰算法进行搜索和优化。哈里斯鹰算法是一种基于鹰群行为的启发式搜索算法,通过模拟鹰群协作和竞争的行为来找到最优解。
  6. 更新种群:将动态反向学习和哈里斯鹰算法得到的优化个体与初始种群进行合并,形成新的种群。
  7. 重复步骤2至6:重复执行步骤2至6,直到达到停止条件(如达到最大迭代次数或找到满意的解决方案)。
  8. 输出结果:输出最优解决方案,即适应度最高的个体。

⛄ 部分代码

% Developed in MATLAB R2013b% Source codes demo version 1.0% _____________________________________________________% Main paper:% Harris hawks optimization: Algorithm and applications% Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, Huiling Chen% Future Generation Computer Systems, % DOI: https://doi.org/10.1016/j.future.2019.02.028% https://www.sciencedirect.com/science/article/pii/S0167739X18313530% _____________________________________________________% You can run the HHO code online at codeocean.com  https://doi.org/10.24433/CO.1455672.v1% You can find the HHO code at https://github.com/aliasghar68/Harris-hawks-optimization-Algorithm-and-applications-.git% _____________________________________________________%  Author, inventor and programmer: Ali Asghar Heidari,%  PhD research intern, Department of Computer Science, School of Computing, National University of Singapore, Singapore%  Exceptionally Talented Ph. DC funded by Iran's National Elites Foundation (INEF), University of Tehran%  03-03-2019%  Researchgate: https://www.researchgate.net/profile/Ali_Asghar_Heidari%  e-Mail: as_heidari@ut.ac.ir, aliasghar68@gmail.com,%  e-Mail (Singapore): aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu% _____________________________________________________%  Co-author and Advisor: Seyedali Mirjalili%%         e-Mail: ali.mirjalili@gmail.com%                 seyedali.mirjalili@griffithuni.edu.au%%       Homepage: http://www.alimirjalili.com% _____________________________________________________%  Co-authors: Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, and Hui-Ling Chen%       Homepage: http://www.evo-ml.com/2019/03/02/hho/% _____________________________________________________%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Harris's hawk optimizer: In this algorithm, Harris' hawks try to catch the rabbit.% T: maximum iterations, N: populatoin size, CNVG: Convergence curve% To run HHO: [Rabbit_Energy,Rabbit_Location,CNVG]=HHO(N,T,lb,ub,dim,fobj)function [Rabbit_Energy,Rabbit_Location,CNVG]=HHO(N,T,lb,ub,dim,fobj)% initialize the location and Energy of the rabbitRabbit_Location=zeros(1,dim);Rabbit_Energy=inf;%Initialize the locations of Harris' hawksX=initialization(N,dim,ub,lb);CNVG=zeros(1,T);t=0; % Loop counterwhile t<T    for i=1:size(X,1)        % Check boundries        FU=X(i,:)>ub;FL=X(i,:)<lb;X(i,:)=(X(i,:).*(~(FU+FL)))+ub.*FU+lb.*FL;        % fitness of locations        fitness=fobj(X(i,:));        % Update the location of Rabbit        if fitness<Rabbit_Energy            Rabbit_Energy=fitness;            Rabbit_Location=X(i,:);        end    end        E1=2*(1-(t/T)); % factor to show the decreaing energy of rabbit    % Update the location of Harris' hawks    for i=1:size(X,1)        E0=2*rand()-1; %-1<E0<1        Escaping_Energy=E1*(E0);  % escaping energy of rabbit                if abs(Escaping_Energy)>=1            %% Exploration:            % Harris' hawks perch randomly based on 2 strategy:                        q=rand();            rand_Hawk_index = floor(N*rand()+1);            X_rand = X(rand_Hawk_index, :);            if q<0.5                % perch based on other family members                X(i,:)=X_rand-rand()*abs(X_rand-2*rand()*X(i,:));            elseif q>=0.5                % perch on a random tall tree (random site inside group's home range)                X(i,:)=(Rabbit_Location(1,:)-mean(X))-rand()*((ub-lb)*rand+lb);            end                    elseif abs(Escaping_Energy)<1            %% Exploitation:            % Attacking the rabbit using 4 strategies regarding the behavior of the rabbit                        %% phase 1: surprise pounce (seven kills)            % surprise pounce (seven kills): multiple, short rapid dives by different hawks                        r=rand(); % probablity of each event                        if r>=0.5 && abs(Escaping_Energy)<0.5 % Hard besiege                X(i,:)=(Rabbit_Location)-Escaping_Energy*abs(Rabbit_Location-X(i,:));            end                        if r>=0.5 && abs(Escaping_Energy)>=0.5  % Soft besiege                Jump_strength=2*(1-rand()); % random jump strength of the rabbit                X(i,:)=(Rabbit_Location-X(i,:))-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:));            end                        %% phase 2: performing team rapid dives (leapfrog movements)            if r<0.5 && abs(Escaping_Energy)>=0.5, % Soft besiege % rabbit try to escape by many zigzag deceptive motions                                Jump_strength=2*(1-rand());                X1=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:));                                if fobj(X1)<fobj(X(i,:)) % improved move?                    X(i,:)=X1;                else % hawks perform levy-based short rapid dives around the rabbit                    X2=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:))+rand(1,dim).*Levy(dim);                    if (fobj(X2)<fobj(X(i,:))), % improved move?                        X(i,:)=X2;                    end                end            end                        if r<0.5 && abs(Escaping_Energy)<0.5, % Hard besiege % rabbit try to escape by many zigzag deceptive motions                % hawks try to decrease their average location with the rabbit                Jump_strength=2*(1-rand());                X1=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-mean(X));                                if fobj(X1)<fobj(X(i,:)) % improved move?                    X(i,:)=X1;                else % Perform levy-based short rapid dives around the rabbit                    X2=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-mean(X))+rand(1,dim).*Levy(dim);                    if (fobj(X2)<fobj(X(i,:))), % improved move?                        X(i,:)=X2;                    end                end            end            %%        end    end    t=t+1;    CNVG(t)=Rabbit_Energy;%    Print the progress every 100 iterations%    if mod(t,100)==0%        display(['At iteration ', num2str(t), ' the best fitness is ', num2str(Rabbit_Energy)]);%    endendend% ___________________________________function o=Levy(d)beta=1.5;sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);u=randn(1,d)*sigma;v=randn(1,d);step=u./abs(v).^(1/beta);o=step;end

⛄ 运行结果

⛄ 参考文献

[1]贾鹤鸣,刘庆鑫,刘宇翔等.融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法[J].智能系统学报,2023,18(01):104-116.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合




相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
115 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
1月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
66 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
23天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
23天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
1月前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
24天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
26天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
|
26天前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
8天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
11天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。

热门文章

最新文章