伟大的事业,需要决心,能力,组织和责任感。 ——易卜生
1 负载因子
负载因子用于衡量一个哈希表冲突情况,公式为:
负载因子 = 键数量/bucket数量
例如,对于一个bucket数量为8,包含8个键值对的哈希表来说,这个哈希表的负载因子为1.
哈希表需要将负载因子控制在合适的大小,超过其阀值需要进行rehash,也即键值对重新组织:
- 哈希因子过小,说明空间利用率低
- 哈希因子过大,说明冲突严重,存取效率低
每个哈希表的实现对负载因子容忍程度不同,比如Redis实现中负载因子大于1时就会触发rehash,而Go则在在负载因子达到6.5时才会触发rehash,因为Redis的每个bucket只能存1个键值对,而Go的bucket可能存8个键值对,所以Go可以容忍更高的负载因子。
2 渐进式扩容
2.1 扩容的前提条件 两个
为了保证访问效率,当新元素将要添加进map时,都会检查是否需要扩容,扩容实际上是以空间换时间的手段。触发扩容的条件有二个:
- 负载因子 > 6.5时,也即平均每个bucket存储的键值对达到6.5个。
- overflow数量 > 2^15时,也即overflow数量超过32768时。
2.2 增量扩容
当负载因子过大时,就新建一个bucket,新的bucket长度是原来的2倍,然后旧bucket数据搬迁到新的bucket。考虑到如果map存储了数以亿计的key-value,一次性搬迁将会造成比较大的延时,Go采用逐步搬迁策略,即每次访问map时都会触发一次搬迁,每次搬迁2个键值对。
下图展示了包含一个bucket满载的map:
当前map存储了7个键值对,只有1个bucket。此地负载因子为7。再次插入数据时将会触发扩容操作,扩容之后再将新插入键写入新的bucket。
当第8个键值对插入时,将会触发扩容,扩容后示意图如下:
hmap数据结构中oldbuckets成员指身原bucket,而buckets指向了新申请的bucket。新的键值对被插入新的bucket中。后续对map的访问操作会触发迁移,将oldbuckets中的键值对逐步的搬迁过来。当oldbuckets中的键值对全部搬迁完毕后,删除oldbuckets。
搬迁完成后的示意图如下:
数据搬迁过程中原bucket中的键值对将存在于新bucket的前面,新插入的键值对将存在于新bucket的后面。
2.3 等量扩容
所谓等量扩容,实际上并不是扩大容量,buckets数量不变,重新做一遍类似增量扩容的搬迁动作,把松散的键值对重新排列一次,以使bucket的使用率更高,进而保证更快的存取。在极端场景下,比如不断的增删,而键值对正好集中在一小部分的bucket,这样会造成overflow的bucket数量增多,但负载因子又不高,从而无法执行增量搬迁的情况,如下图所示:
上图可见,overflow的buckt中大部分是空的,访问效率会很差。此时进行一次等量扩容,即buckets数量不变,经过重新组织后overflow的bucket数量会减少,即节省了空间又会提高访问效率。
2.4 查找过程
- 跟据key值算出哈希值
- 取哈希值低位与hmpa.B取模确定bucket位置
- 取哈希值高位在tophash数组中查询
- 如果tophash[i]中存储值也哈希值相等,则去找到该bucket中的key值进行比较
- 当前bucket没有找到,则继续从下个overflow的bucket中查找。
- 如果当前处于搬迁过程,则优先从oldbuckets查找
- 注:如果查找不到,也不会返回空值,而是返回相应类型的0值。
2.5 插入过程
新员素插入过程如下:
- 跟据key值算出哈希值
- 取哈希值低位与hmap.B取模确定bucket位置
- 查找该key是否已经存在,如果存在则直接更新值
- 如果没找到将key,将key插入
3 关注公众号
微信公众号:堆栈future